Class EllipseFitTaubin1
- All Implemented Interfaces:
EllipseFitAlgebraic
Algebraic ellipse fit based on Taubin's method [1]. Version 1 uses the full scatter and constraint matrix (6x6), the solution is found by a generalized symmetric eigendecomposition. Note that the constraint matrix (C) is not positive definite. See [3, Sec. 11.2.1] for a detailed description (Alg. 11.7). This implementation performs data centering or, alternatively, accepts a specific reference point.
[1] G. Taubin, G. Taubin. "Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit
equations with applications to edge and range image segmentation", IEEE Transactions on Pattern Analysis and Machine
Intelligence 13(11), 1115–1138 (1991).
[2] W. Burger, M.J. Burge, Digital Image Processing – An
Algorithmic Introduction, 3rd ed, Springer (2022).
- Version:
- 2021/11/09
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface imagingbook.common.geometry.fitting.ellipse.algebraic.EllipseFitAlgebraic
EllipseFitAlgebraic.FitType
-
Constructor Summary
ConstructorsConstructorDescriptionEllipseFitTaubin1
(Pnt2d[] points) EllipseFitTaubin1
(Pnt2d[] points, Pnt2d xref) -
Method Summary
Modifier and TypeMethodDescriptiondouble[]
Returns a vector of algebraic ellipse parameters:(a,b,c,d,e,f)
, representing the ellipse bya x^2 + b x y + c y^2 + d x + e y + f = 0
.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface imagingbook.common.geometry.fitting.ellipse.algebraic.EllipseFitAlgebraic
getDataOffsetCorrectionMatrix, getEllipse, isEllipse
-
Constructor Details
-
EllipseFitTaubin1
-
EllipseFitTaubin1
-
-
Method Details
-
getParameters
Description copied from interface:EllipseFitAlgebraic
Returns a vector of algebraic ellipse parameters:(a,b,c,d,e,f)
, representing the ellipse bya x^2 + b x y + c y^2 + d x + e y + f = 0
.- Specified by:
getParameters
in interfaceEllipseFitAlgebraic
- Returns:
- the ellipse parameters
-