001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.ellipse.algebraic;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.PntUtils;
013import imagingbook.common.math.Matrix;
014import imagingbook.common.math.eigen.GeneralizedSymmetricEigenDecomposition;
015import org.apache.commons.math3.linear.MatrixUtils;
016import org.apache.commons.math3.linear.RealMatrix;
017
018import static imagingbook.common.math.Arithmetic.sqr;
019
020/**
021 * <p>
022 * Algebraic ellipse fit based on Taubin's method [1]. Version 1 uses the full scatter and constraint matrix (6x6), the
023 * solution is found by a generalized symmetric eigendecomposition. Note that the constraint matrix (C) is not positive
024 * definite. See [3, Sec. 11.2.1] for a detailed description (Alg. 11.7). This implementation performs data centering
025 * or, alternatively, accepts a specific reference point.
026 * <p>
027 * [1] G. Taubin, G. Taubin. "Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit
028 * equations with applications to edge and range image segmentation", IEEE Transactions on Pattern Analysis and Machine
029 * Intelligence 13(11), 1115–1138 (1991). <br> [2] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An
030 * Algorithmic Introduction</em>, 3rd ed, Springer (2022).
031 * </p>
032 *
033 * @author WB
034 * @version 2021/11/09
035 * @see EllipseFitTaubin2
036 */
037public class EllipseFitTaubin1 implements EllipseFitAlgebraic {
038        
039        private final double[] q;       // = (A,B,C,D,E,F) ellipse parameters
040        
041        public EllipseFitTaubin1(Pnt2d[] points, Pnt2d xref) {
042                if (points.length < 5) {
043                        throw new IllegalArgumentException("at least 5 points must be supplied for ellipse fitting");
044                }
045                this.q = fit(points, xref);
046                
047        }
048        
049        public EllipseFitTaubin1(Pnt2d[] points) {
050                this(points, PntUtils.centroid(points));
051        }
052
053        @Override
054        public double[] getParameters() {
055                return this.q;
056        }
057        
058        // --------------------------------------------------------------------------
059        
060        private double[] fit(Pnt2d[] points, Pnt2d xref) {
061                final int n = points.length;
062                
063                // reference point
064                final double xr = xref.getX();
065                final double yr = xref.getY();
066
067                // design matrix (same as Fitzgibbon):
068                RealMatrix X = MatrixUtils.createRealMatrix(n, 6);
069                for (int i = 0; i < n; i++) {
070                        final double x = points[i].getX() - xr; // center data set
071                        final double y = points[i].getY() - yr;
072                        double[] fi = {sqr(x), x*y, sqr(y), x, y, 1};
073                        X.setRow(i, fi);
074                }
075                
076                // scatter matrix S (normalized by 1/n)
077                RealMatrix S = X.transpose().multiply(X).scalarMultiply(1.0/n);
078                        
079                double a = S.getEntry(0, 5);
080                double b = S.getEntry(2, 5);
081                double c = S.getEntry(1, 5);    //2*s[1][5];
082                double d = S.getEntry(3, 5);
083                double e = S.getEntry(4, 5);
084                
085                // constraint matrix
086                RealMatrix C = Matrix.makeRealMatrix(6, 6, 
087                                4*a, 2*c, 0,   2*d, 0,   0 , 
088                                2*c, a+b, 2*c, e,   d,   0 , 
089                                0,   2*c, 4*b, 0,   2*e, 0 , 
090                                2*d, e,   0,   1,   0,   0 ,
091                                0,   d,   2*e, 0,   1,   0 , 
092                                0,   0,   0,   0,   0,   0 );
093                
094                // solve C*p = lambda*S*p (note: C is not positive definite!)
095                GeneralizedSymmetricEigenDecomposition eigen = 
096                                new GeneralizedSymmetricEigenDecomposition(C, S, 1e-15, 1e-15); 
097                
098                double[] evals = eigen.getRealEigenvalues();
099                
100                int k = Matrix.idxMax(evals);   // index of largest eigenvalue
101                double[] qopt = eigen.getEigenvector(k).toArray();
102                
103                RealMatrix U = getDataOffsetCorrectionMatrix(xr, yr);
104                return U.operate(qopt);
105        }
106}