java.lang.Object
imagingbook.common.geometry.ellipse.AlgebraicEllipse
Represents an algebraic ellipse with the implicit equation A x^2 + B x y + C y^2 + D x + E y + F = 0. Parameters A, ..., F are normalized such that B^2 - 4 A C = -1. Instances are immutable. See Secs. 11.2.1 and F.3.1 for details.
[1] W. Burger, M.J. Burge, Digital Image Processing – An Algorithmic Introduction, 3rd ed, Springer (2022).
- Version:
- 2022/11/17
-
Constructor Summary
ConstructorsConstructorDescriptionAlgebraicEllipse(double[] p) Constructor.AlgebraicEllipse(double A, double B, double C, double D, double E, double F) Constructor.Constructor. -
Method Summary
Modifier and TypeMethodDescriptionbooleanequals(AlgebraicEllipse other, double tolerance) booleandoubledoubledouble[]Return a vector of parameters for this ellipse.doubletoString()
-
Constructor Details
-
AlgebraicEllipse
Constructor. Creates aAlgebraicEllipseinstance by normalizing the supplied parameters [A,...,F] such that d = B^2 - 4 A C = -1. Throws an exception if d is non-negative.- Parameters:
A- ellipse parameter AB- ellipse parameter BC- ellipse parameter CD- ellipse parameter DE- ellipse parameter EF- ellipse parameter F
-
AlgebraicEllipse
Constructor. Creates aAlgebraicEllipseinstance from the specified parameter vector [A,...,F].- Parameters:
p- algebraic ellipse parameters
-
AlgebraicEllipse
Constructor. Creates aAlgebraicEllipseinstance from aGeometricEllipse.- Parameters:
ge- aGeometricEllipse
-
-
Method Details
-
getParameters
Return a vector of parameters for this ellipse. The length of the vector and the meaning of the parameters depends on the concrete ellipse type.- Returns:
- a vector of parameters [A, B, C, D, E, F]
-
getAlgebraicDistance
-
getSampsonDistance
-
getGoncharovaDistance
-
equals
-
equals
-
duplicate
-
toString
-