001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package More_;
010
011import ij.ImagePlus;
012import ij.gui.GenericDialog;
013import ij.plugin.PlugIn;
014import ij.process.FloatProcessor;
015import ij.process.ImageProcessor;
016import imagingbook.common.noise.hashing.Hash32Shift;
017import imagingbook.common.noise.hashing.Hash32ShiftMult;
018import imagingbook.common.noise.hashing.Hash32Ward;
019import imagingbook.common.noise.hashing.HashFunction;
020import imagingbook.common.noise.hashing.HashPermute;
021import imagingbook.common.noise.perlin.PerlinNoiseGenerator2d;
022import imagingbook.core.jdoc.JavaDocHelp;
023
024/**
025 * <p>
026 * This ImageJ plugin creates a new noise image using a 2D gradient noise generator [1]. Several parameters can be
027 * adjusted. See Ch. 8 of [2] for details. The resulting noise image is of type {@link FloatProcessor}.
028 * </p>
029 * <p>
030 * [1] K. Perlin. Improving noise. In "SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and
031 * Interactive Techniques", pp. 681–682, San Antonio, Texas (2002).
032 * <br>
033 * [2] W. Burger and M. J. Burge. "Principles of
034 * Digital Image Processing - Advanced Methods" (Vol. 3). Undergraduate Topics in Computer Science. Springer-Verlag,
035 * London (2013).
036 * </p>
037 *
038 * @author WB
039 * @version 2022/11/24
040 */
041public class Perlin_Noise_2D implements PlugIn, JavaDocHelp {
042        
043        private enum HasFunctionType {
044                HashPermute, Hash32Ward, Hash32Shift, Hash32ShiftMult;
045        }
046        
047        private static int W = 400;                             // image width
048        private static int H = 300;                             // image height
049        private static int K = 3;                               // number of noise frequencies
050        private static double fmin = 0.01;      // min. frequency (in cycles per pixel unit) 
051        private static double fmax = fmin * Math.pow(2, K);
052        private static double persistence = 0.5; // persistence
053        private static HasFunctionType HashT = HasFunctionType.HashPermute;
054        private static int seed = 0;                    // hash seed 
055
056        @Override
057        public void run(String arg0) {
058                
059                if (!runDialog()) {
060                        return;
061                }
062                
063                HashFunction hf = getHashFun();
064                
065                // create the noise generator:
066                PerlinNoiseGenerator2d ng = new PerlinNoiseGenerator2d(fmin, fmax, persistence, hf);
067                
068                // create a new image and fill with noise:
069                ImageProcessor fp = new FloatProcessor(W, H);
070                
071                for (int v = 0; v < H; v++) {
072                        for (int u = 0; u < W; u++) {
073                                double val = ng.getNoiseValue(u, v);
074                                fp.setf(u, v, (float)val);
075                        }
076                }
077                
078                // display the new image:
079                (new ImagePlus("Perlin Noise Image", fp)).show();
080        }
081        
082        private HashFunction getHashFun() {
083                switch(HashT) {
084                case Hash32Shift:
085                        return new Hash32Shift(seed); 
086                case Hash32ShiftMult:
087                        return new Hash32ShiftMult(seed); 
088                case Hash32Ward:
089                        return new Hash32Ward(seed); 
090                case HashPermute:
091                        return new HashPermute(seed); 
092                }
093                return null;
094        }
095        
096        private boolean runDialog() {
097                GenericDialog gd = new GenericDialog(this.getClass().getSimpleName());
098                gd.addHelp(getJavaDocUrl());
099                gd.addNumericField("Image width", W, 0);
100                gd.addNumericField("Image height", H, 0);
101                gd.addNumericField("Number of noise frequencies", K, 0);
102                gd.addNumericField("Min. frequency (f_min)", fmin, 2);
103                gd.addNumericField("Max. frequency (f_max)", fmax, 2);
104                gd.addNumericField("Persistence", persistence, 2);
105                gd.addNumericField("Seed (0 = random)", seed, 0);
106                gd.addEnumChoice("Hash function type", HashT);
107                
108                gd.showDialog();
109                if (gd.wasCanceled()) {
110                        return false;
111                }
112                
113                W = (int) gd.getNextNumber();
114                H = (int) gd.getNextNumber();
115                K = (int) gd.getNextNumber();
116                fmin = gd.getNextNumber();
117                fmax = gd.getNextNumber();
118                persistence = gd.getNextNumber();
119                seed = (int) gd.getNextNumber();
120                HashT = gd.getNextEnumChoice(HasFunctionType.class);
121                return true;
122        }
123}