001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package Ch25_SIFT; 011 012import ij.IJ; 013import ij.ImagePlus; 014import ij.gui.GenericDialog; 015import ij.plugin.filter.PlugInFilter; 016import ij.process.FloatProcessor; 017import ij.process.ImageProcessor; 018import imagingbook.common.color.sets.BasicAwtColor; 019import imagingbook.common.geometry.basic.Pnt2d; 020import imagingbook.common.ij.DialogUtils; 021import imagingbook.common.ij.IjUtils; 022import imagingbook.common.ij.overlay.ColoredStroke; 023import imagingbook.common.ij.overlay.ShapeOverlayAdapter; 024import imagingbook.common.math.VectorNorm.NormType; 025import imagingbook.common.sift.SiftColors; 026import imagingbook.common.sift.SiftDescriptor; 027import imagingbook.common.sift.SiftDetector; 028import imagingbook.common.sift.SiftMatch; 029import imagingbook.common.sift.SiftMatcher; 030import imagingbook.common.sift.SiftParameters; 031import imagingbook.core.jdoc.JavaDocHelp; 032import imagingbook.sampleimages.GeneralSampleImage; 033 034import java.awt.Color; 035import java.awt.Font; 036import java.awt.Shape; 037import java.awt.geom.AffineTransform; 038import java.awt.geom.Line2D; 039import java.awt.geom.QuadCurve2D; 040import java.util.List; 041 042import static imagingbook.common.color.sets.ColorEnumeration.getColors; 043import static imagingbook.common.ij.IjUtils.noCurrentImage; 044 045/** 046 * <p> 047 * This ImageJ plugin demonstrates the use of the SIFT detection and matching framework. See Sec. 25.5 of [1] for 048 * details. 049 * </p> 050 * <p> 051 * The plugin takes a single image, which is assumed to be composed of a left and right frame. The input image is split 052 * horizontally, then SIFT detection and matching is applied to the two sub-images. The input image is always converted 053 * to grayscale (and normalized to [0,1]) before SIFT feature detection is performed. The result is displayed as a 054 * graphic overlay by connecting and annotating the best-matching features. When saved as a TIFF image the overlay is 055 * preserved. 056 * </p> 057 * <p> 058 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 059 * (2022). 060 * </p> 061 * 062 * @author WB 063 * @version 2022/11/20 064 */ 065public class SIFT_Matching_Demo implements PlugInFilter, JavaDocHelp { 066 067 // matching parameters: 068 private static NormType DistanceNormType = SiftMatcher.DefaultNormType; 069 private static double MaxDistanceRatio = SiftMatcher.DefaultRMax; 070 071 // display parameters: 072 private static int NumberOfMatchesToShow = 25; 073 private static double FeatureScale = 1.0; 074 private static boolean ShowFeatureLabels = true; 075 076 private static double MatchLineCurvature = 0.25; 077 private static double FeatureStrokewidth = 1.0; 078 079 private static BasicAwtColor MatchLineColor = BasicAwtColor.Magenta; 080 private static BasicAwtColor LabelColor = BasicAwtColor.Yellow; 081 private static Font LabelFont = new Font(Font.SANS_SERIF, Font.PLAIN, 12); 082 083 private static Color[] ScaleLevelColors = getColors(SiftColors.class); 084 085 private ImagePlus im = null; 086 087 /** 088 * Constructor, asks to open a predefined sample image if no other image is currently open. 089 */ 090 public SIFT_Matching_Demo() { 091 if (noCurrentImage()) { 092 DialogUtils.askForSampleImage(GeneralSampleImage.RamsesSmall); 093 } 094 } 095 096 @Override 097 public int setup(String arg0, ImagePlus im) { 098 this.im = im; 099 return DOES_ALL; 100 } 101 102 @Override 103 public void run(ImageProcessor ip) { 104 if (!runDialog()) { 105 return; 106 } 107 108 final int w = ip.getWidth(); 109 final int h = ip.getHeight(); 110 final int w2 = w / 2; 111 112 FloatProcessor Ia = IjUtils.crop(ip, 0, 0, w2, h).convertToFloatProcessor(); 113 FloatProcessor Ib = IjUtils.crop(ip, w2, 0, w2, h).convertToFloatProcessor(); 114 115 SiftParameters siftParams = new SiftParameters(); 116 // modify SIFT parameters here if needed 117 118 // we use the same parameters on left and right image 119 SiftDetector sdA = new SiftDetector(Ia, siftParams); 120 SiftDetector sdB = new SiftDetector(Ib, siftParams); 121 122 List<SiftDescriptor> fsA = sdA.getSiftFeatures(); 123 List<SiftDescriptor> fsB = sdB.getSiftFeatures(); 124 125 IJ.log("SIFT features found in left image: " + fsA.size()); 126 IJ.log("SIFT features found in right image: " + fsB.size()); 127 128 // create a SIFT matcher and perform matching: 129 SiftMatcher sm = new SiftMatcher(DistanceNormType, MaxDistanceRatio); 130 List<SiftMatch> matches = sm.match(fsA, fsB); // matches are sorted by decreasing quality 131 132 IJ.log("Matches found: " + matches.size()); 133 if (matches.isEmpty()) { 134 return; 135 } 136 137 // -------------------------------------------------- 138 139 ColoredStroke matchLineStroke = new ColoredStroke(0.2, MatchLineColor.getColor()); 140 ColoredStroke[] fStrokes = new ColoredStroke[ScaleLevelColors.length]; 141 for (int i = 0; i < ScaleLevelColors.length; i++) { 142 fStrokes[i] = new ColoredStroke(FeatureStrokewidth, ScaleLevelColors[i]); 143 } 144 145 ShapeOverlayAdapter ola = new ShapeOverlayAdapter(); 146 ola.setTextColor(LabelColor.getColor()); 147 ola.setFont(LabelFont); 148 149 AffineTransform trans = AffineTransform.getTranslateInstance(w2, 0); 150 151 // add vertical separator between left and right image: 152 ola.addShape(new Line2D.Double(w2 - 0.5, 0, w2 - 0.5, h), 153 new ColoredStroke(0.2, Color.green, 5)); 154 155 // add SIFT markers, connecting lines and number labels 156 int n = 1; 157 for (SiftMatch m : matches) { 158 SiftDescriptor dA = m.getDescriptor1(); 159 SiftDescriptor dB = m.getDescriptor2(); 160 161 // draw the matched SIFT markers: 162 Shape sA = dA.getShape(FeatureScale); 163 Shape sB = trans.createTransformedShape(dB.getShape(FeatureScale)); 164 ola.addShape(sA, fStrokes[dA.getScaleLevel() % fStrokes.length]); 165 ola.addShape(sB, fStrokes[dB.getScaleLevel() % fStrokes.length]); 166 167 // draw the connecting lines: 168 Shape cAB = makeConnectingShape(dA, dB.plus(w2, 0)); 169 ola.addShape(cAB, matchLineStroke); 170 171 // draw the numeric feature labels on both sides: 172 if (ShowFeatureLabels) { 173 String label = Integer.toString(n); 174 ola.addText(dA.getX(), dA.getY(), label); 175 ola.addText(dB.getX() + w2, dB.getY(), label); 176 } 177 if (++n > NumberOfMatchesToShow) break; 178 } 179 180 im.setOverlay(ola.getOverlay()); 181 } 182 183 // ------------------------- 184 185 private Shape makeConnectingShape(Pnt2d p1, Pnt2d p2) { 186 double x1 = p1.getX(); 187 double y1 = p1.getY(); 188 double x2 = p2.getX(); 189 double y2 = p2.getY(); 190 double dx = x2 - x1; 191 double dy = y2 - y1; 192 double ctrlx = (x1 + x2) / 2 - MatchLineCurvature * dy; 193 double ctrly = (y1 + y2) / 2 + MatchLineCurvature * dx; 194 return new QuadCurve2D.Double(x1, y1, ctrlx, ctrly, x2, y2); 195 } 196 197 // ------------------------- 198 199 private boolean runDialog() { 200 GenericDialog gd = new GenericDialog(this.getClass().getSimpleName()); 201 gd.addHelp(getJavaDocUrl()); 202 gd.addMessage("This plugin expects a single image composed of a left and right frame."); 203 204 gd.addMessage("SIFT matching parameters:"); 205 gd.addEnumChoice("Distance norm type", DistanceNormType); 206 gd.addNumericField("Max. ratio between 1st/2nd match (rMax)", MaxDistanceRatio, 2); 207 208 gd.addMessage("Display parameters:"); 209 gd.addNumericField("Number of matches to show", NumberOfMatchesToShow, 0); 210 gd.addNumericField("Feature scale", FeatureScale, 2); 211 gd.addNumericField("Match line curvature", MatchLineCurvature, 2); 212 gd.addEnumChoice("Match line color", MatchLineColor); 213 gd.addEnumChoice("Label color", LabelColor); 214 gd.addCheckbox("Show feature labels", ShowFeatureLabels); 215 216 gd.showDialog(); 217 if (gd.wasCanceled()) { 218 return false; 219 } 220 221 DistanceNormType = gd.getNextEnumChoice(NormType.class); 222 MaxDistanceRatio = gd.getNextNumber(); 223 NumberOfMatchesToShow = (int) gd.getNextNumber(); 224 FeatureScale = gd.getNextNumber(); 225 MatchLineCurvature = gd.getNextNumber(); 226 MatchLineColor = gd.getNextEnumChoice(BasicAwtColor.class); 227 LabelColor = gd.getNextEnumChoice(BasicAwtColor.class); 228 ShowFeatureLabels = gd.getNextBoolean(); 229 return true; 230 } 231 232}