001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package Ch23_Image_Matching; 010 011import ij.IJ; 012import ij.ImagePlus; 013import ij.gui.GenericDialog; 014import ij.gui.Roi; 015import ij.plugin.filter.PlugInFilter; 016import ij.process.FloatProcessor; 017import ij.process.ImageProcessor; 018import imagingbook.common.color.sets.BasicAwtColor; 019import imagingbook.common.ij.DialogUtils; 020import imagingbook.common.ij.IjUtils; 021import imagingbook.common.ij.overlay.ColoredStroke; 022import imagingbook.common.ij.overlay.ShapeOverlayAdapter; 023import imagingbook.common.image.LocalMinMaxFinder; 024import imagingbook.common.image.LocalMinMaxFinder.ExtremalPoint; 025import imagingbook.common.image.matching.CorrCoeffMatcher; 026import imagingbook.core.jdoc.JavaDocHelp; 027import imagingbook.sampleimages.GeneralSampleImage; 028 029import java.awt.Font; 030import java.awt.Rectangle; 031import java.awt.geom.Rectangle2D; 032import java.util.Locale; 033import java.util.Random; 034 035/** 036 * <p> 037 * This ImageJ plugin demonstrates the use of the {@link CorrCoeffMatcher} class. The active (grayscale) image is taken 038 * as the search image. The reference (template) image is extracted from the required rectangular selection (ROI) in the 039 * search image and then corrupted by Gaussian noise with user-specified sigma. The correlation coefficient matcher is 040 * quite resistant to high noise levels. Detected matches are shown as graphic overlays on the input image. Also, the 041 * matching score surface and its local maxima are optionally displayed. See Sec. 23.1.1 (Alg. 23.1) of [1] for 042 * additional details on correlation coefficient matching. 043 * </p> 044 * <p> 045 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 046 * (2022). 047 * </p> 048 * 049 * @author WB 050 * @version 2022/12/16 051 * @see CorrCoeffMatcher 052 * @see LocalMinMaxFinder 053 */ 054public class CorrelCoefficient_Matching implements PlugInFilter, JavaDocHelp { 055 056 private static boolean ShowReferenceImage = true; 057 private static boolean ShowScoreMap = true; 058 059 private static boolean ReferenceAddNoise = true; 060 private static double ReferenceNoiseSigma = 20.0; 061 private static double AcceptanceThreshold = 0.60; 062 private static boolean ShowScoreValues = true; 063 private static int ScoreValueFontSize = 5; 064 065 private static int MaxLocalMinimaCount = 10; 066 private static double MarkerSize = 2; 067 private static double MarkerStrokeWidth = 0.5; 068 private static BasicAwtColor BestMatchColor = BasicAwtColor.Green; 069 private static BasicAwtColor OtherMatchColor = BasicAwtColor.Orange; 070 071 private ImagePlus imgI; // the search image 072 073 /** 074 * Constructor, asks to open a predefined sample image if no other image is currently open. 075 */ 076 public CorrelCoefficient_Matching() { 077 if (IjUtils.noCurrentImage()) { 078 if (DialogUtils.askForSampleImage(GeneralSampleImage.IrishManor)) { 079 ImagePlus imp = IJ.getImage(); 080 imp.setRoi(190, 41, 30, 30); 081 } 082 } 083 } 084 085 @Override 086 public int setup(String arg, ImagePlus imp) { 087 this.imgI = imp; 088 return DOES_8G + ROI_REQUIRED + NO_CHANGES; 089 } 090 091 @Override 092 public void run(ImageProcessor ipI) { 093 094 Rectangle roi = ipI.getRoi(); 095 if (roi == null) { 096 IJ.showMessage("Rectangular selection required!"); 097 return; 098 } 099 100 if (!runDialog()) { 101 return; 102 } 103 104 ImageProcessor I = ipI; // search image 105 ImageProcessor R = ipI.crop(); // reference image 106 int wR = R.getWidth(); 107 int hR = R.getHeight(); 108 109 if (ReferenceAddNoise) { 110 Random rg = new Random(); 111 for (int u = 0; u < wR; u++) { 112 for (int v = 0; v < hR; v++) { 113 double x = R.get(u, v) + rg.nextGaussian() * ReferenceNoiseSigma; 114 R.putPixel(u, v, (int) Math.round(x)); 115 } 116 } 117 } 118 119 if (ShowReferenceImage) { 120 new ImagePlus("Reference image (R)", R).show(); 121 } 122 123 124 CorrCoeffMatcher matcher = new CorrCoeffMatcher(I); 125 float[][] Q = matcher.getMatch(R); // 2D match score function 126 FloatProcessor fQ = new FloatProcessor(Q); 127 128 // find local minima in 2D score function Q: 129 LocalMinMaxFinder locator = new LocalMinMaxFinder(fQ); 130 ExtremalPoint[] maxima = locator.getMaxima(MaxLocalMinimaCount); 131 132 // show result on the search image: 133 { 134 imgI.setRoi((Roi) null); // remove ROI selection 135 ShapeOverlayAdapter ola = new ShapeOverlayAdapter(); 136 ColoredStroke bestStroke = new ColoredStroke(MarkerStrokeWidth, BestMatchColor.getColor()); 137 ColoredStroke otherStroke = new ColoredStroke(MarkerStrokeWidth, OtherMatchColor.getColor()); 138 139 // mark matches in search image: 140 ola.setStroke(bestStroke); 141 ola.setTextColor(BestMatchColor.getColor()); 142 ola.setFont(new Font(Font.SANS_SERIF, Font.PLAIN, ScoreValueFontSize)); 143 for (int i = 0; i < maxima.length; i++) { 144 ExtremalPoint ep = maxima[i]; 145 if (ep.q < AcceptanceThreshold) { 146 break; 147 } 148 if (i > 0) { 149 ola.setStroke(otherStroke); 150 ola.setTextColor(OtherMatchColor.getColor()); 151 } 152 ola.addShape(new Rectangle2D.Double(maxima[i].x, maxima[i].y, wR, hR)); 153 if (ShowScoreValues) { 154 ola.addText(ep.x + 1, ep.y, String.format(Locale.US, "%.3f", maxima[i].q)); 155 } 156 } 157 imgI.setOverlay(ola.getOverlay()); 158 } 159 160 if (ShowScoreMap) { 161 // create graphic overlay: 162 ShapeOverlayAdapter ola = new ShapeOverlayAdapter(); 163 ColoredStroke bestStroke = new ColoredStroke(MarkerStrokeWidth, BestMatchColor.getColor()); 164 ColoredStroke otherStroke = new ColoredStroke(MarkerStrokeWidth, OtherMatchColor.getColor()); 165 166 // mark local minima 167 ola.setStroke(bestStroke); 168 ola.setTextColor(BestMatchColor.getColor()); 169 ola.setFont(new Font(Font.SANS_SERIF, Font.PLAIN, ScoreValueFontSize)); 170 for (int i = 0; i < maxima.length; i++) { 171 ExtremalPoint ep = maxima[i]; 172 if (ep.q < AcceptanceThreshold) { 173 break; 174 } 175 if (i > 0) { 176 ola.setStroke(otherStroke); 177 ola.setTextColor(OtherMatchColor.getColor()); 178 } 179 ola.addShape(ep.getShape(MarkerSize)); 180 if (ShowScoreValues) { 181 ola.addText(ep.x + MarkerSize, ep.y, String.format(Locale.US, "%.3f", maxima[i].q)); 182 } 183 } 184 185 ImagePlus matchIm = new ImagePlus("Match of " + imgI.getTitle(), fQ); 186 matchIm.setOverlay(ola.getOverlay()); 187 matchIm.show(); 188 } 189 } 190 191 // ------------------------------------------------- 192 193 private boolean runDialog() { 194 GenericDialog gd = new GenericDialog(this.getClass().getSimpleName()); 195 gd.addHelp(getJavaDocUrl()); 196 gd.addCheckbox("Add noise to reference image", ReferenceAddNoise); 197 gd.addNumericField("Reference noise sigma", ReferenceNoiseSigma, 2); 198 gd.addNumericField("Acceptance threshold (< 1.0)", AcceptanceThreshold, 2); 199 gd.addNumericField("Max. local minima count", MaxLocalMinimaCount, 0); 200 gd.addEnumChoice("Best match color", BestMatchColor); 201 gd.addEnumChoice("Other match color", OtherMatchColor); 202 gd.addCheckbox("Show score values", ShowScoreValues); 203 gd.addNumericField("Score value font size", ScoreValueFontSize, 0); 204 gd.addCheckbox("Show reference image", ShowReferenceImage); 205 gd.addCheckbox("Show score map", ShowScoreMap); 206 207 gd.showDialog(); 208 if (gd.wasCanceled()) 209 return false; 210 211 ReferenceAddNoise = gd.getNextBoolean(); 212 ReferenceNoiseSigma = gd.getNextNumber(); 213 AcceptanceThreshold = gd.getNextNumber(); 214 MaxLocalMinimaCount = (int) gd.getNextNumber(); 215 BestMatchColor = gd.getNextEnumChoice(BasicAwtColor.class); 216 OtherMatchColor = gd.getNextEnumChoice(BasicAwtColor.class); 217 ShowScoreValues = gd.getNextBoolean(); 218 ScoreValueFontSize = (int) gd.getNextNumber(); 219 ShowReferenceImage = gd.getNextBoolean(); 220 ShowScoreMap = gd.getNextBoolean(); 221 return true; 222 } 223}