001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package Ch08_Binary_Regions;
010
011import ij.IJ;
012import ij.ImagePlus;
013import ij.gui.GenericDialog;
014import ij.plugin.PlugIn;
015import ij.process.ByteProcessor;
016import ij.process.ImageProcessor;
017import imagingbook.common.geometry.moments.FlusserMoments;
018import imagingbook.common.math.Matrix;
019import imagingbook.common.math.PrintPrecision;
020import imagingbook.common.math.Statistics;
021import imagingbook.common.regions.BinaryRegion;
022import imagingbook.common.regions.BinaryRegionSegmentation;
023import imagingbook.common.regions.RegionContourSegmentation;
024import imagingbook.core.jdoc.JavaDocHelp;
025import imagingbook.core.resource.ImageResource;
026import imagingbook.sampleimages.kimia.Kimia1070;
027import imagingbook.sampleimages.kimia.Kimia216;
028import imagingbook.sampleimages.kimia.Kimia99;
029
030import java.util.ArrayList;
031import java.util.List;
032
033/**
034 * <p>
035 * This ImageJ plugin calculates the covariance matrix for the 11-element Flusser moment vectors over a collection of
036 * binary images. The plugin assumes binary images (with 0 background and non-zero foreground) and calculates the 11
037 * scale and rotation invariant Flusser moments (sec. G.3 of [1] for details) for the largest contained region contained
038 * in each image of the data set . The resulting covariance matrix is output in {@code float} and bit-encoded
039 * {@code long} format to avoid precision loss. The latter can be converted to {@code double} using
040 * {@link Matrix#fromLongBits(long[][])}. The covariance matrix is used as a parameter to the Mahalanobis distance for
041 * matching moment vectors (see {@link Flusser_Moments_Matching_Demo}).
042 * </p>
043 * <p>
044 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
045 * (2022).
046 * </p>
047 *
048 * @author WB
049 * @version 2022/12/28
050 * @see Flusser_Moments_Matching_Demo
051 */
052public class Flusser_Moments_Covariance_Matrix implements PlugIn, JavaDocHelp {
053
054        private enum DataSet {
055                Kimia99, Kimia216, Kimia1070
056        }
057
058        private static DataSet DATA_SET = DataSet.Kimia99;
059        private static int MIN_REGION_SIZE = 50;
060        private static boolean LIST_LONG_ENCODED_MATRIX = false;
061
062        public void run(String arg0) {
063                if (!runDialog())
064                        return;
065
066                Class<? extends ImageResource> clazz = null;
067                switch(DATA_SET) {
068                        case Kimia99:           clazz = Kimia99.class; break;
069                        case Kimia216:          clazz = Kimia216.class; break;
070                        case Kimia1070:         clazz = Kimia1070.class; break;
071                }
072
073                ImageResource[] irs = clazz.getEnumConstants();
074                IJ.log("Processing " + clazz.getSimpleName() + " dataset (" + irs.length + " images)");
075
076                // moment vectors
077                List<double[]> samples = new ArrayList<double[]>();
078
079                for (int i = 0; i < irs.length; i++) {
080                        ImageResource ir = irs[i];
081                        ImagePlus img = ir.getImagePlus();
082                        if (img == null) {
083                                IJ.log("ERROR: could not open " + ir);
084                                continue;
085                        }
086                        ImageProcessor ip = img.getProcessor(); // do some processing
087                        if (!(ip instanceof ByteProcessor)) {
088                                IJ.log("ERROR: Wrong image type: " + ir);
089                                continue;
090                        }
091
092                        BinaryRegionSegmentation segmenter = new RegionContourSegmentation((ByteProcessor) ip);
093                        List<BinaryRegion> regions = segmenter.getRegions(true);
094                        if (!regions.isEmpty()) {
095                                BinaryRegion r = regions.get(0);
096                                if (r.getSize() >= MIN_REGION_SIZE) {
097                                        double[] moments = new FlusserMoments(r).getInvariantMoments();
098                                        if (!isFinite(moments)) {
099                                                IJ.log("ERROR: non-finite moment vector for " + ir + ": " + Matrix.toString(moments));
100                                        }
101                                        else {
102                                                samples.add(moments);
103                                        }
104                                }
105                        }
106                }
107
108                double[][] samplesA = samples.toArray(new double[0][]);
109                double[][] cov = Statistics.covarianceMatrix(samplesA);
110
111                PrintPrecision.set(9);
112                IJ.log("covariance matrix (double):\n" + Matrix.toString(cov));
113
114                if ( LIST_LONG_ENCODED_MATRIX) {
115                        IJ.log("covariance matrix (long):\n" + Matrix.toString(Matrix.toLongBits(cov)));
116                }
117        }
118
119        private boolean isFinite(double[] moments) {
120                for (int i = 0; i < moments.length; i++) {
121                        if (Double.isFinite(moments[i])) {
122                                return true;
123                        }
124                }
125                return false;
126        }
127
128        // ------------------------------------------------------------------------
129
130        private boolean runDialog() {
131                GenericDialog gd = new GenericDialog(this.getClass().getSimpleName());
132                gd.addHelp(getJavaDocUrl());
133                gd.addEnumChoice("Data set to use", DATA_SET);
134                gd.addNumericField("Minimum region size (pixels)", MIN_REGION_SIZE);
135                gd.addCheckbox("List long-encoded covariance matrix", LIST_LONG_ENCODED_MATRIX);
136
137                gd.showDialog();
138                if (gd.wasCanceled()) {
139                        return false;
140                }
141
142                DATA_SET = gd.getNextEnumChoice(DataSet.class);
143                MIN_REGION_SIZE = (int) gd.getNextNumber();
144                LIST_LONG_ENCODED_MATRIX = gd.getNextBoolean();
145                return true;
146        }
147
148}
149