001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.spectral.dft; 010 011/** 012 * <p> 013 * Direct (slow) implementation of the 1-dimensional DFT using tabulated sine 014 * and cosine values. Note that this class has no public constructor - 015 * instantiate sub-class {@link Dft1dDirect.Float} or {@link Dft1dDirect.Double} 016 * instead, as shown below. See Sec. 18.4.1 of [1] for additional details. 017 * </p> 018 * <p> 019 * Usage example (for {@code float} data): 020 * </p> 021 * <pre> 022 * float[] re = {1, 2, 3, 4, 5, 3, 0}; 023 * float[] im = {0, 0, 0, 0, 0, 0, 0}; 024 * Dft1d.Float dft = new Dft1dDirect.Float(re.length); 025 * dct.forward(re, im); // re/im now is the DFT spectrum 026 * dct.inverse(re, im); // re/im now is the original signal 027 * ... 028 * </pre> 029 * <p> 030 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic 031 * Introduction</em>, 3rd ed, Springer (2022). 032 * </p> 033 * 034 * @author WB 035 * @version 2022/10/23 036 */ 037public abstract class Dft1dDirect extends Dft1dImp { 038 039 final double[] WC; // table of cosine values, WC(k) = cos(2 pi k / M) 040 final double[] WS; // table of sine values, WC(k) = sin(2 pi k / M) 041 042 private Dft1dDirect(int size, ScalingMode sm) { 043 super(size, sm); // sets M 044 this.WC = makeCosTable(); 045 this.WS = makeSinTable(); 046 } 047 048 private double[] makeCosTable() { 049 final double[] cosTable = new double[M]; 050 for (int k = 0; k < M; k++) { 051 cosTable[k] = Math.cos(2 * Math.PI * k / M); 052 } 053 return cosTable; 054 } 055 056 private double[] makeSinTable() { 057 final double[] sinTable = new double[M]; 058 for (int k = 0; k < M; k++) { 059 sinTable[k] = Math.sin(2 * Math.PI * k / M); 060 } 061 return sinTable; 062 } 063 064 // ---------------------------------------------------------------------- 065 066 /** 067 * One-dimensional DFT implementation using {@code float} data. 068 */ 069 public static class Float extends Dft1dDirect implements Dft1d.Float { 070 071 private final float[] outRe; 072 private final float[] outIm; 073 074 /** 075 * Constructor using a specific scaling mode. 076 * 077 * @param M the size of the data vectors 078 * @param sm the scaling mode 079 */ 080 public Float(int M, ScalingMode sm) { 081 super(M, sm); 082 this.outRe = new float[M]; 083 this.outIm = new float[M]; 084 } 085 086 /** 087 * Constructor using the default scaling mode. 088 * 089 * @param M the size of the data vectors 090 */ 091 public Float(int M) { 092 this(M, ScalingMode.DEFAULT); 093 } 094 095 @Override 096 public void forward(float[] gRe, float[] gIm) { 097 transform(gRe, gIm, true); 098 } 099 100 @Override 101 public void inverse(float[] GRe, float[] GIm) { 102 transform(GRe, GIm, false); 103 } 104 105 @Override 106 public void transform(float[] inRe, float[] inIm, boolean forward) { 107 checkSize(inRe, inIm); 108 final double scale = sm.getScale(M, forward); 109 for (int u = 0; u < M; u++) { 110 double sumRe = 0; 111 double sumIm = 0; 112 for (int m = 0; m < M; m++) { 113 final double re = inRe[m]; 114 final double im = inIm[m]; 115 final int k = (u * m) % M; 116 final double cosPhi = WC[k]; 117 final double sinPhi = (forward) ? -WS[k] : WS[k]; 118 // complex multiplication: (gRe + i gIm) * (cosPhi + i sinPhi) 119 sumRe += re * cosPhi - im * sinPhi; 120 sumIm += re * sinPhi + im * cosPhi; 121 } 122 outRe[u] = (float) (scale * sumRe); 123 outIm[u] = (float) (scale * sumIm); 124 } 125 System.arraycopy(outRe, 0, inRe, 0, M); 126 System.arraycopy(outIm, 0, inIm, 0, M); 127 } 128 } 129 130 // ---------------------------------------------------------------------- 131 132 /** 133 * One-dimensional DFT implementation using {@code double} data. 134 */ 135 public static class Double extends Dft1dDirect implements Dft1d.Double { 136 137 private final double[] outRe; 138 private final double[] outIm; 139 140 /** 141 * Constructor using a specific scaling mode. 142 * 143 * @param M the size of the data vectors 144 * @param sm the scaling mode 145 */ 146 public Double(int M, ScalingMode sm) { 147 super(M, sm); 148 this.outRe = new double[M]; 149 this.outIm = new double[M]; 150 } 151 152 /** 153 * Constructor using the default scaling mode. 154 * 155 * @param M the size of the data vectors 156 */ 157 public Double(int M) { 158 this(M, ScalingMode.DEFAULT); 159 } 160 161 @Override 162 public void forward(double[] gRe, double[] gIm) { 163 transform(gRe, gIm, true); 164 } 165 166 @Override 167 public void inverse(double[] GRe, double[] GIm) { 168 transform(GRe, GIm, false); 169 } 170 171 @Override 172 public void transform(double[] inRe, double[] inIm, boolean forward) { 173 checkSize(inRe, inIm); 174 final double scale = sm.getScale(M, forward); 175 for (int u = 0; u < M; u++) { 176 double sumRe = 0; 177 double sumIm = 0; 178 for (int m = 0; m < M; m++) { 179 final double re = inRe[m]; 180 final double im = inIm[m]; 181 final int k = (u * m) % M; 182 final double cosPhi = WC[k]; 183 final double sinPhi = (forward) ? -WS[k] : WS[k]; 184 // complex multiplication: (gRe + i gIm) * (cosPhi + i sinPhi) 185 sumRe += re * cosPhi - im * sinPhi; 186 sumIm += re * sinPhi + im * cosPhi; 187 } 188 outRe[u] = scale * sumRe; 189 outIm[u] = scale * sumIm; 190 } 191 System.arraycopy(outRe, 0, inRe, 0, M); 192 System.arraycopy(outIm, 0, inIm, 0, M); 193 } 194 195 } 196 197 // ---------------------------------------------------------------------- 198 199 /* 200 * Direct implementation of the one-dimensional DFT for arbitrary signal lengths. 201 * This DFT uses the same definition as Mathematica. Example: 202 * Fourier[{1, 2, 3, 4, 5, 6, 7, 8}, FourierParameters -> {0, -1}]: 203 {12.7279 + 0. i, 204 -1.41421 + 3.41421 i, 205 -1.41421 + 1.41421 i, 206 -1.41421 + 0.585786 i, 207 -1.41421 + 0. i, 208 -1.41421 - 0.585786 i, 209 -1.41421 - 1.41421 i, 210 -1.41421 - 3.41421 i} 211 */ 212 213// //test example 214// public static void main(String[] args) { 215// 216// System.out.println("******************** Float test (DFT) ********************"); 217// { 218// float[] re = { 1, 2, 3, 4, 5, 6, 7, 8 }; 219// float[] im = new float[re.length]; 220// 221// System.out.println("original signal:"); 222// System.out.println("gRe = " + Matrix.toString(re)); 223// System.out.println("gIm = " + Matrix.toString(im)); 224// 225// Dft1d.Float dft = new Dft1dDirect.Float(re.length); 226// dft.forward(re, im); 227//// float[] GRe = dft.getRe(); 228//// float[] GIm = dft.getIm(); 229// 230// System.out.println("DFT spectrum:"); 231// System.out.println("GRe = " + Matrix.toString(re)); 232// System.out.println("GIm = " + Matrix.toString(im)); 233// 234// dft.inverse(re, im); 235// 236// System.out.println("reconstructed signal:"); 237// System.out.println("gRe' = " + Matrix.toString(re)); 238// System.out.println("gIm' = " + Matrix.toString(im)); 239// } 240// 241// System.out.println(); 242// System.out.println("******************** Double test (DFT) ********************"); 243// 244// { 245// double[] re = { 1, 2, 3, 4, 5, 6, 7, 8 }; 246// double[] im = new double[re.length]; 247// 248// System.out.println("original signal:"); 249// System.out.println("gRe = " + Matrix.toString(re)); 250// System.out.println("gIm = " + Matrix.toString(im)); 251// 252// Dft1d.Double dft = new Dft1dDirect.Double(re.length); 253// dft.forward(re, im); 254// 255// System.out.println("DFT spectrum:"); 256// System.out.println("GRe = " + Matrix.toString(re)); 257// System.out.println("GIm = " + Matrix.toString(im)); 258// 259// dft.inverse(re, im); 260// 261// System.out.println("reconstructed signal:"); 262// System.out.println("gRe' = " + Matrix.toString(re)); 263// System.out.println("gIm' = " + Matrix.toString(im)); 264// } 265// } 266 267}