001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.spectral.dft;
010
011/**
012 * <p>
013 * Direct (slow) implementation of the 1-dimensional DFT using tabulated sine
014 * and cosine values. Note that this class has no public constructor -
015 * instantiate sub-class {@link Dft1dDirect.Float} or {@link Dft1dDirect.Double}
016 * instead, as shown below. See Sec. 18.4.1 of [1] for additional details.
017 * </p>
018 * <p>
019 * Usage example (for {@code float} data):
020 * </p>
021 * <pre>
022 * float[] re = {1, 2, 3, 4, 5, 3, 0};
023 * float[] im = {0, 0, 0, 0, 0, 0, 0};
024 * Dft1d.Float dft = new Dft1dDirect.Float(re.length);
025 * dct.forward(re, im);  // re/im now is the DFT spectrum
026 * dct.inverse(re, im);  // re/im now is the original signal 
027 * ...
028 * </pre>
029 * <p>
030 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic
031 * Introduction</em>, 3rd ed, Springer (2022).
032 * </p>
033 * 
034 * @author WB
035 * @version 2022/10/23
036 */
037public abstract class Dft1dDirect extends Dft1dImp {
038        
039        final double[] WC;      // table of cosine values, WC(k) = cos(2 pi k / M)
040        final double[] WS;      // table of sine values,   WC(k) = sin(2 pi k / M)
041        
042        private Dft1dDirect(int size, ScalingMode sm) {
043                super(size, sm);        // sets M
044                this.WC = makeCosTable();
045                this.WS = makeSinTable();
046        }
047        
048        private double[] makeCosTable() {
049                final double[] cosTable = new double[M];
050                for (int k = 0; k < M; k++) {
051                        cosTable[k] = Math.cos(2 * Math.PI * k / M);
052                }
053                return cosTable;
054        }
055
056        private double[] makeSinTable() {
057                final double[] sinTable = new double[M];
058                for (int k = 0; k < M; k++) {
059                        sinTable[k] = Math.sin(2 * Math.PI * k / M);
060                }
061                return sinTable;
062        }
063        
064        // ----------------------------------------------------------------------
065        
066        /**
067         * One-dimensional DFT implementation using {@code float} data. 
068         */
069        public static class Float extends Dft1dDirect implements Dft1d.Float {
070                
071                private final float[] outRe;
072                private final float[] outIm;
073                
074                /**
075                 * Constructor using a specific scaling mode.
076                 * 
077                 * @param M the size of the data vectors
078                 * @param sm the scaling mode
079                 */
080                public Float(int M, ScalingMode sm) {
081                        super(M, sm);
082                        this.outRe = new float[M];
083                        this.outIm = new float[M];
084                }
085                
086                /**
087                 * Constructor using the default scaling mode.
088                 * 
089                 * @param M the size of the data vectors
090                 */
091                public Float(int M) {
092                        this(M, ScalingMode.DEFAULT);
093                }
094                
095                @Override
096                public void forward(float[] gRe, float[] gIm) {
097                        transform(gRe, gIm, true);
098                }
099                
100                @Override
101                public void inverse(float[] GRe, float[] GIm) {
102                        transform(GRe, GIm, false);
103                }
104                
105                @Override
106                public void transform(float[] inRe, float[] inIm, boolean forward) {
107                        checkSize(inRe, inIm);
108                        final double scale = sm.getScale(M, forward);
109                        for (int u = 0; u < M; u++) {
110                                double sumRe = 0;
111                                double sumIm = 0;
112                                for (int m = 0; m < M; m++) {
113                                        final double re = inRe[m];
114                                        final double im = inIm[m];
115                                        final int k = (u * m) % M;
116                                        final double cosPhi = WC[k];
117                                        final double sinPhi = (forward) ? -WS[k] : WS[k];
118                                        // complex multiplication: (gRe + i gIm) * (cosPhi + i sinPhi)
119                                        sumRe += re * cosPhi - im * sinPhi;
120                                        sumIm += re * sinPhi + im * cosPhi;
121                                }
122                                outRe[u] = (float) (scale * sumRe);     
123                                outIm[u] = (float) (scale * sumIm);
124                        }
125                        System.arraycopy(outRe, 0, inRe, 0, M);
126                        System.arraycopy(outIm, 0, inIm, 0, M);
127                }
128        }
129
130        // ----------------------------------------------------------------------
131        
132        /**
133         * One-dimensional DFT implementation using {@code double} data. 
134         */
135        public static class Double extends Dft1dDirect implements Dft1d.Double {
136                
137                private final double[] outRe;
138                private final double[] outIm;
139                
140                /**
141                 * Constructor using a specific scaling mode.
142                 * 
143                 * @param M the size of the data vectors
144                 * @param sm the scaling mode
145                 */
146                public Double(int M, ScalingMode sm) {
147                        super(M, sm);
148                        this.outRe = new double[M];
149                        this.outIm = new double[M];
150                }
151                
152                /**
153                 * Constructor using the default scaling mode.
154                 * 
155                 * @param M the size of the data vectors
156                 */
157                public Double(int M) {
158                        this(M, ScalingMode.DEFAULT);
159                }
160                
161                @Override
162                public void forward(double[] gRe, double[] gIm) {
163                        transform(gRe, gIm, true);
164                }
165                
166                @Override
167                public void inverse(double[] GRe, double[] GIm) {
168                        transform(GRe, GIm, false);
169                }
170                
171                @Override
172                public void transform(double[] inRe, double[] inIm, boolean forward) {
173                        checkSize(inRe, inIm);
174                        final double scale = sm.getScale(M, forward);
175                        for (int u = 0; u < M; u++) {
176                                double sumRe = 0;
177                                double sumIm = 0;
178                                for (int m = 0; m < M; m++) {
179                                        final double re = inRe[m];
180                                        final double im = inIm[m];
181                                        final int k = (u * m) % M;
182                                        final double cosPhi = WC[k];
183                                        final double sinPhi = (forward) ? -WS[k] : WS[k];
184                                        // complex multiplication: (gRe + i gIm) * (cosPhi + i sinPhi)
185                                        sumRe += re * cosPhi - im * sinPhi;
186                                        sumIm += re * sinPhi + im * cosPhi;
187                                }
188                                outRe[u] = scale * sumRe;       
189                                outIm[u] = scale * sumIm;
190                        }
191                        System.arraycopy(outRe, 0, inRe, 0, M);
192                        System.arraycopy(outIm, 0, inIm, 0, M);
193                }
194                
195        }
196
197        // ----------------------------------------------------------------------
198
199        /*
200         * Direct implementation of the one-dimensional DFT for arbitrary signal lengths.
201         * This DFT uses the same definition as Mathematica. Example:
202         * Fourier[{1, 2, 3, 4, 5, 6, 7, 8}, FourierParameters -> {0, -1}]:
203                {12.7279 + 0. i, 
204                -1.41421 + 3.41421 i, 
205                -1.41421 + 1.41421 i, 
206                -1.41421 + 0.585786 i, 
207                -1.41421 + 0. i, 
208                -1.41421 - 0.585786 i, 
209                -1.41421 - 1.41421 i, 
210                -1.41421 - 3.41421 i}
211         */
212
213//      //test example
214//      public static void main(String[] args) {
215//
216//              System.out.println("******************** Float test (DFT) ********************");
217//              {
218//                      float[] re = { 1, 2, 3, 4, 5, 6, 7, 8 };
219//                      float[] im = new float[re.length];
220//
221//                      System.out.println("original signal:");
222//                      System.out.println("gRe = " + Matrix.toString(re));
223//                      System.out.println("gIm = " + Matrix.toString(im));
224//
225//                      Dft1d.Float dft = new Dft1dDirect.Float(re.length);
226//                      dft.forward(re, im);
227////                    float[] GRe = dft.getRe();
228////                    float[] GIm = dft.getIm();
229//
230//                      System.out.println("DFT spectrum:");
231//                      System.out.println("GRe = " + Matrix.toString(re));
232//                      System.out.println("GIm = " + Matrix.toString(im));
233//
234//                      dft.inverse(re, im);
235//
236//                      System.out.println("reconstructed signal:");
237//                      System.out.println("gRe' = " + Matrix.toString(re));
238//                      System.out.println("gIm' = " + Matrix.toString(im));
239//              }
240//              
241//              System.out.println();
242//              System.out.println("******************** Double test (DFT) ********************");
243//
244//              {
245//                      double[] re = { 1, 2, 3, 4, 5, 6, 7, 8 };
246//                      double[] im = new double[re.length];
247//
248//                      System.out.println("original signal:");
249//                      System.out.println("gRe = " + Matrix.toString(re));
250//                      System.out.println("gIm = " + Matrix.toString(im));
251//
252//                      Dft1d.Double dft = new Dft1dDirect.Double(re.length);
253//                      dft.forward(re, im);
254//
255//                      System.out.println("DFT spectrum:");
256//                      System.out.println("GRe = " + Matrix.toString(re));
257//                      System.out.println("GIm = " + Matrix.toString(im));
258//
259//                      dft.inverse(re, im);
260//
261//                      System.out.println("reconstructed signal:");
262//                      System.out.println("gRe' = " + Matrix.toString(re));
263//                      System.out.println("gIm' = " + Matrix.toString(im));
264//              }
265//      }
266
267}