001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.spectral.dct; 011 012/** 013 * <p> 014 * Calculates the 1D discrete cosine transform (DFT) on {@code double} data. 015 * This is a naive implementation which calculates cosines repeatedly (i.e., does 016 * NOT use pre-calculated cosine tables), intended for demonstration purposes 017 * only. See Sec. 20.1 (Prog. 20.1) of [1] for additional details. 018 * </p> 019 * <p> 020 * Usage example: 021 * <pre> 022 * double[] data = {1, 2, 3, 4, 5, 3, 0}; 023 * Dct1d.Double dct = new Dct1dSlow(data.length); 024 * dct.forward(data); 025 * dct.inverse(data); 026 * ... </pre> 027 * <p> 028 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic 029 * Introduction</em>, 3rd ed, Springer (2022). 030 * </p> 031 * 032 * @author WB 033 * @version 2022/10/23 034 * @see Dct1dDirect 035 * @see Dct1dFast 036 */ 037public class Dct1dSlow implements Dct1d.Double { 038 039 private final double CM0 = 1.0 / Math.sqrt(2); 040 private final int M; 041 private final double[] tmp; 042 043 /** 044 * Constructor. 045 * @param M the data size 046 */ 047 public Dct1dSlow(int M) { 048 this.M = M; 049 this.tmp = new double[M]; 050 } 051 052 @Override 053 public int getSize() { 054 return this.M; 055 } 056 057 // ---------------------------------------------------------------------------- 058 059 @Override 060 public void forward(double[] g) { 061 checkSize(g); 062 final double s = Math.sqrt(2.0 / M); 063 double[] G = tmp; 064 for (int m = 0; m < M; m++) { 065 double cm = (m == 0) ? CM0 : 1.0; 066 double sum = 0; 067 for (int u = 0; u < M; u++) { 068 double Phi = Math.PI * m * (2 * u + 1) / (2 * M); 069 sum += g[u] * cm * Math.cos(Phi); 070 } 071 G[m] = s * sum; 072 } 073 System.arraycopy(G, 0, g, 0, M); // copy G -> g 074 } 075 076 @Override 077 public void inverse(double[] G) { 078 checkSize(G); 079 final double s = Math.sqrt(2.0 / M); //common scale factor 080 double[] g = tmp; 081 for (int u = 0; u < M; u++) { 082 double sum = 0; 083 for (int m = 0; m < M; m++) { 084 double cm = (m == 0) ? CM0 : 1.0; 085 double Phi = Math.PI * m * (2 * u + 1) / (2 * M); 086 sum += G[m] * cm * Math.cos(Phi); 087 } 088 g[u] = s * sum; 089 } 090 System.arraycopy(g, 0, G, 0, M); // copy g -> G 091 } 092 093 // test example 094// public static void main(String[] args) { 095// PrintPrecision.set(6); 096// double[] data = {1,2,3,4,5,3,0}; 097// System.out.println("Original data: " + Matrix.toString(data)); 098// 099// Dct1d.Double dct = new Dct1dSlow(data.length); 100// dct.forward(data); 101// System.out.println("DCT spectrum: " + Matrix.toString(data)); 102// 103// dct.inverse(data); 104// System.out.println("Reconstructed data: " + Matrix.toString(data)); 105// } 106 107 // Original data: {1.000, 2.000, 3.000, 4.000, 5.000, 3.000, 0.000} 108 // DCT of data: {6.803, -0.361, -3.728, 1.692, -0.888, -0.083, 0.167} 109 // Reconstructed data: {1.000, 2.000, 3.000, 4.000, 5.000, 3.000, -0.000} 110 111}