001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.threshold.global; 011 012/** 013 * <p> 014 * This is an implementation of the global "minimum error" thresholder proposed by Kittler and Illingworth in [1]. See 015 * Sec. 9.1.6 (Alg. 9.6) of [2] for a detailed description. 016 * </p> 017 * <p> 018 * [1] J. Illingworth and J. Kittler. "Minimum error thresholding". Pattern Recognition 19(1), 41–47 (1986). <br> [2] W. 019 * Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer (2022). 020 * </p> 021 * 022 * @author WB 023 * @version 2022/08/01 024 */ 025public class MinErrorThresholder implements GlobalThresholder { 026 027 static final double EPSILON = 1E-12; 028 029 private double[] S2_0, S2_1; 030 private int N; 031 032 public MinErrorThresholder() { 033 super(); 034 } 035 036 @Override 037 public float getThreshold(int[] h) { 038 int K = h.length; 039 makeSigmaTables(h); // set up S2_0, S2_1, N 040 041 int n0 = 0, n1; 042 float qMin = NoThreshold; 043 double eMin = Double.POSITIVE_INFINITY; 044 for (int q = 0; q <= K-2; q++) { 045 n0 = n0 + h[q]; 046 n1 = N - n0; 047 if (n0 > 0 && n1 > 0) { 048 double P0 = (double) n0 / N; // could use n0, n1 instead 049 double P1 = (double) n1 / N; 050 double e = // 1.0 + 051 P0 * Math.log(S2_0[q]) + P1 * Math.log(S2_1[q]) 052 - 2 * (P0 * Math.log(P0) + P1 * Math.log(P1)); 053 if (e < eMin) { // minimize e; 054 eMin = e; 055 qMin = q; 056 } 057 } 058 } 059 return qMin; 060 } 061 062 private void makeSigmaTables(int[] h) { 063 int K = h.length; 064 final double unitVar = 1d/12; // variance of a uniform distribution in unit interval 065 S2_0 = new double[K]; 066 S2_1 = new double[K]; 067 068 int n0 = 0; 069 long A0 = 0; 070 long B0 = 0; 071 for (int q = 0; q < K; q++) { 072 long ql = q; // need a long type to avoid overflows 073 n0 = n0 + h[q]; 074 A0 = A0 + h[q] * ql; 075 B0 = B0 + h[q] * ql*ql; 076 S2_0[q] = (n0 > 0) ? 077 unitVar + (B0 - (double)A0*A0/n0)/n0 : 0; 078 } 079 080 N = n0; 081 082 int n1 = 0; 083 long A1 = 0; 084 long B1 = 0; 085 S2_1[K-1] = 0; 086 for (int q = K-2; q >= 0; q--) { 087 long qp1 = q+1; 088 n1 = n1 + h[q+1]; 089 A1 = A1 + h[q+1] * qp1; 090 B1 = B1 + h[q+1] * qp1*qp1; 091 S2_1[q] = (n1 > 0) ? 092 unitVar + (B1 - (double)A1*A1/n1)/n1 : 0; 093 } 094 } 095 096}