001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.threshold.global; 011 012/** 013 * <p> 014 * Simple global thresholder which uses the mean pixel value as the threshold. See Sec. 9.1.2 of [1] for additional 015 * details (Eq. 9.10). 016 * </p> 017 * <p> 018 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 019 * (2022). 020 * </p> 021 * 022 * @author WB 023 * @version 2022/08/01 024 */ 025public class MeanThresholder implements GlobalThresholder { 026 027 public MeanThresholder() { 028 } 029 030 @Override 031 public float getThreshold(int[] h) { 032 // calculate mean of the entire image: 033 int K = h.length; 034 int N = 0; 035 036 long sum = 0; 037 for (int i = 0; i < K; i++) { 038 N += h[i]; 039 sum += i * h[i]; 040 } 041 042 int mean = (int) Math.floor((double)sum / N); // important to use floor for bi-level images 043 044 // count resulting background pixels: 045 int nb = 0; 046 for (int i = 0; i <= mean; i++) { 047 nb += h[i]; 048 } 049 050 // determine if background or foreground is empty: 051 if (nb < N) 052 return mean; 053 else 054 return NoThreshold; // no threshold found 055 } 056}