001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.sift; 011 012import ij.process.FloatProcessor; 013import imagingbook.common.math.Arithmetic; 014import imagingbook.common.math.Matrix; 015import imagingbook.common.sift.scalespace.DogOctave; 016import imagingbook.common.sift.scalespace.DogScaleSpace; 017import imagingbook.common.sift.scalespace.GaussianScaleSpace; 018import imagingbook.common.sift.scalespace.ScaleLevel; 019 020import java.util.ArrayList; 021import java.util.Collections; 022import java.util.List; 023 024import static imagingbook.common.math.Arithmetic.mod; 025import static imagingbook.common.math.Arithmetic.sqr; 026 027/** 028 * <p> 029 * This class implements the detection of SIFT features from images, as described in [1]. See Ch. 25 of [2] for more 030 * details. 031 * </p> 032 * <p> 033 * Currently only images of type {@link FloatProcessor} are supported. The input image is normalized to values in [0,1] 034 * before SIFT detection starts. A large set of parameters can be specified (see {@link SiftParameters}). 035 * </p> 036 * <p> 037 * [1] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 038 * 60, 91–110 (2004). <br> [2] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic 039 * Introduction</em>, 3rd ed, Springer (2022). 040 * </p> 041 * 042 * @author WB 043 * @version 2022/11/20 044 * @see SiftParameters 045 */ 046public class SiftDetector { 047 048 /** 049 * Types of 3D neighborhoods used in min/max detection 050 */ 051 public enum NeighborhoodType3D { 052 NH8(8), NH10(10), NH18(18), NH26(26); 053 private final int size; 054 private NeighborhoodType3D(int size) { 055 this.size = size; 056 } 057 } 058 059 static private final double PI2 = 2 * Math.PI; 060 061 private final SiftParameters params; 062 private final int nhSize; 063 private final GaussianScaleSpace G; 064 private final DogScaleSpace D; 065 066 // Constructors ------------------------------------ 067 068 /** 069 * Constructor using default parameters. 070 * @param fp the input image 071 * @see #SiftDetector(FloatProcessor, SiftParameters) 072 */ 073 public SiftDetector(FloatProcessor fp) { 074 this(fp, new SiftParameters()); // uses default parameters 075 } 076 077 /** 078 * <p> 079 * Constructor using specific parameters. The input image is normalized to values in [0,1], the minimum pixel value 080 * being mapped to 0 and the maximum value to 1. An exception is thrown if the supplied image is "flat", i.e., 081 * contains only a single pixel value. A large set of parameters can be specified (see {@link SiftParameters}). The 082 * constructor sets up the complete Gaussian and DoG scale spaces but does not perform feature detection itself, 083 * which is done by calling {@link #getSiftFeatures()}. 084 * </p> 085 * 086 * @param fp the input image 087 * @param params an instance of {@link SiftParameters} 088 * @see SiftParameters 089 */ 090 public SiftDetector(FloatProcessor fp, SiftParameters params) { 091 this.params = params; 092 this.nhSize = params.nhType.size; 093 if (!normalizeTo01(fp)) 094 throw new IllegalArgumentException("could not normalize input image"); 095 this.G = new GaussianScaleSpace(fp, params.P, params.Q, params.sigmaS, params.sigma0, -1, params.Q + 1); 096 this.D = new DogScaleSpace(G); 097 } 098 099 private boolean normalizeTo01(FloatProcessor fp) { 100 float[] a = (float[])fp.getPixels(); 101 float minVal = Matrix.min(a); 102 float maxVal = Matrix.max(a); 103 float diff = maxVal - minVal; 104 if (Arithmetic.isZero(diff)) { 105 return false; // only one pixel value 106 } 107 float scale = 1.0f / diff; 108 for (int i = 0; i < a.length; i++) { 109 a[i] = (a[i] - minVal) * scale; 110 } 111 return true; 112 } 113 114 // -------------------------------------------------- 115 116 /** 117 * Calculates and returns a list of SIFT descriptors. 118 * 119 * @return a list of extracted SIFT descriptors 120 */ 121 public List<SiftDescriptor> getSiftFeatures() { 122 List<KeyPoint> keyPoints = getKeyPoints(); 123 List<SiftDescriptor> siftDescriptors = new ArrayList<SiftDescriptor>(); 124 for (KeyPoint kp : keyPoints) { 125 for (double phi_d : getDominantOrientations(kp)) { 126 SiftDescriptor sd = makeSiftDescriptor(kp, phi_d); 127 if (sd != null) { 128 siftDescriptors.add(sd); 129 } 130 } 131 } 132 return siftDescriptors; 133 } 134 135 /** 136 * Returns the {@link GaussianScaleSpace} for this SIFT detector instance. Mainly intended for debugging and 137 * testing. 138 * 139 * @return the {@link GaussianScaleSpace} for this SIFT detector 140 */ 141 public GaussianScaleSpace getGaussianScaleSpace() { 142 return this.G; 143 } 144 145 /** 146 * Returns the {@link DogScaleSpace} for this SIFT detector instance. Mainly intended for debugging and testing. 147 * 148 * @return the {@link DogScaleSpace} for this SIFT detector 149 */ 150 public DogScaleSpace getDogScaleSpace() { 151 return this.D; 152 } 153 154 // -------------------------------------------------- 155 156 /** 157 * Only used for debugging: produces key points with orientation histograms attached for display purposes. 158 * 159 * @param keypoints the sequence of original key points 160 * @return a sequence of enhanced key points 161 */ 162 @SuppressWarnings("unused") 163 private List<KeyPoint> makeRichKeypoints(List<KeyPoint> keypoints) { 164 List<KeyPoint> richKeyPoints = new ArrayList<KeyPoint>(); 165 for (KeyPoint kp : keypoints) { 166 float[] oh = getOrientationHistogram(kp); 167 smoothCircular(oh,params.nSmooth); 168 kp.orientation_histogram = oh; // TODO: remove, for testing only!! 169 List<Double> peakOrientations = findPeakOrientationIndices(oh); 170 for (double km : peakOrientations) { 171 //for (int i=0; i<Math.min(1, peakOrientations.length); i++) { // use only 1 descriptor! 172 float phi = (float) (km * 2 * Math.PI / oh.length); // 0 <= phi < 2 PI. Should be in range +/-PI? 173 KeyPoint rkp = kp.clone(); 174 rkp.orientation = phi; 175 richKeyPoints.add(rkp); 176 } 177 } 178 return richKeyPoints; 179 } 180 181 /** 182 * Used for debugging/illustrations only! 183 * 184 * @param oh orientation histogram 185 * @return list of histogram indices for the peak orientations 186 */ 187 private List<Double> findPeakOrientationIndices(float[] oh) { 188 int nb = oh.length; 189 List<Double> orientIndexes = new ArrayList<Double>(nb); 190 // find the maximum entry in the orientation histogram 'oh': 191 float maxh = oh[0]; 192 for (int k = 1; k < nb; k++) { 193 if (oh[k] > maxh) 194 maxh = oh[k]; 195 } 196 197 if (maxh > 0.01f) { // ascertain minimum (non-zero) gradient energy 198 // collect all peaks > 80% of the maximum entry in 'oh' 199 float minh = maxh * (float) params.tDomOr; 200 for (int k = 0; k < nb; k++) { // hp ~ hc ~ ha 201 // angles[k] = Float.NaN; 202 float hc = oh[k]; // center value 203 if (oh[k] > minh) { // value is min. 80% of global peak 204 float hp = oh[(k - 1 + nb) % nb]; // previous histogram 205 // value 206 float hn = oh[(k + 1) % nb]; // next histogram value 207 if (hc > hp && hc > hn) { // check if 'hc' is a local peak 208 // interpolate orientation by a quadratic function (parabola): 209 double delta = interpolateQuadratic(hp, hc, hn); 210 double k_max = (k + delta + nb) % nb; 211 // interpolated bin index, 0 <= km < nPhi: 212 // double phi_max = k_max * 2 * Math.PI / nb; // 0 <= 213 // phi < 2 PI. Should be in range +/-PI? 214 orientIndexes.add(k_max); 215 } 216 } 217 } 218 } 219 return orientIndexes; 220 } 221 222 private List<KeyPoint> getKeyPoints() { 223 List<KeyPoint> keyPts = new ArrayList<KeyPoint>(); 224 final int P = params.P; 225 final int K = params.Q; 226 for (int p = 0; p <= P-1; p++) { // for every octave p 227 for (int q = 0; q <= K-1; q++) { // for every scale level q 228 List<KeyPoint> extrema = findExtrema(p, q); 229 for (KeyPoint e : extrema) { 230 KeyPoint c = refineKeyPosition(D, e); 231 if (c != null) { 232 keyPts.add(c); 233 } 234 } 235 } 236 } 237 Collections.sort(keyPts); // always sort (by decreasing score) 238 return keyPts; 239 } 240 241 private List<KeyPoint> findExtrema(int p, int q) { 242 final float tMag = (float) params.tMag; 243 final float tExtrm = (float) params.tExtrm; 244 final DogOctave Dp = D.getOctave(p); 245 final ScaleLevel Dpq = D.getScaleLevel(p, q); 246 final int M = Dpq.getWidth(); 247 final int N = Dpq.getHeight(); 248 249 List<KeyPoint> E = new ArrayList<KeyPoint>(); 250 float scale = (float)D.getAbsoluteScale(p, q); //D.getScaleIndexFloat(p, q); needed? 251 252 final float[][][] nh = new float[3][3][3]; // 3x3x3 neighborhood [q][u][v] 253 for (int u = 1; u <= M - 2; u++) { 254 float x_real = (float) D.getRealX(p, u); // for display purposes only 255 for (int v = 1; v <= N - 2; v++) { 256 float y_real = (float) D.getRealY(p, v); // for display purposes only 257 float mag = Math.abs(Dpq.getValue(u, v)); 258 if (mag > tMag) { 259 Dp.getNeighborhood(q, u, v, nh); // CHANGE to use D not Dp!! 260 if (isExtremum(nh, tExtrm)) { 261 KeyPoint e = new KeyPoint(p, q, u, v, u, v, x_real, y_real, scale, mag); 262 E.add(e); 263 } 264 } 265 } 266 } 267 return E; 268 } 269 270 private KeyPoint refineKeyPosition(DogScaleSpace D, KeyPoint k) { 271 final int p = k.p; 272 final int q = k.q; 273 int u = k.u; 274 int v = k.v; 275 276 final DogOctave Dp = D.getOctave(p); 277 final double rhoMax = params.rhoMax; 278 final double tPeak = params.tPeak; 279 final int nRefine = params.nRefine; 280 281 final float[][][] nh = new float[3][3][3]; // 3x3x3 neighborhood nh[q][u][v] 282 final float[] grad = new float[3]; // gradient (dx, dy, ds) 283 final float[] d = new float[3]; // relocation displacement (dx, dy, ds) 284 final float[][] hess = new float[3][3]; // 3D Hessian matrix: 285 // | dxx dxy dxs | 286 // | dxy dyy dys | 287 // | dxs dys dss | 288 289 final float aMax = (float) (sqr(rhoMax + 1) / rhoMax); 290 KeyPoint kr = null; // refined keypoint 291 boolean done = false; 292 int n = 1; 293 while (!done && n <= nRefine && Dp.isInside(q, u, v)) { 294 Dp.getNeighborhood(q, u, v, nh); // TODO: CHANGE to use D instead of Dp! 295 gradient(nh, grad); // result stored in grad 296 hessian(nh, hess); // result stored in hess 297 final double detH = Matrix.determinant3x3(hess); 298 if (Arithmetic.isZero(detH)) { // Hessian matrix has zero determinant? 299 done = true; // ignore this point and finish 300 } 301 else { 302 final float dxx = hess[0][0]; // extract 2x2 Hessian for calculating curvature ratio below 303 final float dxy = hess[0][1]; 304 final float dyy = hess[1][1]; 305// final float[][] invHess = Matrix.inverse3x3(hess); // deprecated 306 final float[][] invHess = Matrix.inverse(hess); // alternative (numerically stable) 307 Matrix.multiplyD(invHess, grad, d); // d <-- invHess . grad 308 Matrix.multiplyD(-1, d); // d <-- - d 309 final float xx = d[0]; // = x' 310 final float yy = d[1]; // = y' 311 312 if (Math.abs(xx) < 0.5f && Math.abs(yy) < 0.5f) { // stay at this lattice point 313 done = true; 314 final float Dpeak = nh[1][1][1] + 0.5f * (grad[0]*xx + grad[1]*yy + grad[2]*d[2]); 315 final float detHxy = dxx * dyy - dxy * dxy; 316 if (Math.abs(Dpeak) > tPeak && detHxy > 0) { // check peak magnitude 317 final float a = sqr(dxx + dyy) / detHxy; 318 if (a <= aMax) { // check curvature ratio (edgeness) 319 // new, refined keypoint: 320 float x = u + xx; 321 float y = v + yy; 322 float x_real = (float) D.getRealX(p, x); 323 float y_real = (float) D.getRealY(p, y); 324 float scale = (float) D.getAbsoluteScale(p, q); 325 kr = new KeyPoint(k.p, k.q, k.u, k.v, x, y, x_real, y_real, scale, k.magnitude); 326 } 327 } 328 } 329 else { // large displacement, move to a neighboring DoG cell at same level q by at most one unit 330 u = u + Math.min(1, Math.max(-1, Math.round(xx))); // move u by max +/-1 331 v = v + Math.min(1, Math.max(-1, Math.round(yy))); // move v by max +/-1 332 // Note: we don't move along the scale axis! 333 } 334 } 335 n = n + 1; 336 } 337 return kr; 338 } 339 340 private boolean isExtremum(float[][][] nh, float tExtrm) { 341 return isLocalMin(nh, tExtrm) || isLocalMax(nh, tExtrm); 342 } 343 344 private boolean isLocalMin(final float[][][] neighborhood, float tExtrm) { 345 final float c = neighborhood[1][1][1] + tExtrm; // center value + threshold 346 if (c >= 0) return false; // local minimum must have a negative value 347 // check 8 neighbors in scale plane q 348 if (c >= neighborhood[1][0][0]) return false; 349 if (c >= neighborhood[1][1][0]) return false; 350 if (c >= neighborhood[1][2][0]) return false; 351 if (c >= neighborhood[1][0][1]) return false; 352 if (c >= neighborhood[1][2][1]) return false; 353 if (c >= neighborhood[1][0][2]) return false; 354 if (c >= neighborhood[1][1][2]) return false; 355 if (c >= neighborhood[1][2][2]) return false; 356 if (nhSize >= 10) { 357 if (c >= neighborhood[0][1][1]) return false; 358 if (c >= neighborhood[2][1][1]) return false; 359 if (nhSize >= 18) { 360 // check 4 more neighbors in scale plane q-1 361 if (c >= neighborhood[0][0][1]) return false; 362 if (c >= neighborhood[0][2][1]) return false; 363 if (c >= neighborhood[0][1][0]) return false; 364 if (c >= neighborhood[0][1][2]) return false; 365 // check 4 more neighbors in scale plane q+1 366 if (c >= neighborhood[2][0][1]) return false; 367 if (c >= neighborhood[2][2][1]) return false; 368 if (c >= neighborhood[2][1][0]) return false; 369 if (c >= neighborhood[2][1][2]) return false; 370 // optionally check 8 remaining neighbors (corners of cube): 371 if (nhSize >= 26) { 372 if (c >= neighborhood[0][0][0]) return false; 373 if (c >= neighborhood[0][2][0]) return false; 374 if (c >= neighborhood[0][0][2]) return false; 375 if (c >= neighborhood[0][2][2]) return false; 376 if (c >= neighborhood[2][0][0]) return false; 377 if (c >= neighborhood[2][2][0]) return false; 378 if (c >= neighborhood[2][0][2]) return false; 379 if (c >= neighborhood[2][2][2]) return false; 380 } 381 } 382 } 383 return true; 384 } 385 386 private boolean isLocalMax(final float[][][] neighborhood, float tExtrm) { 387 final float c = neighborhood[1][1][1] - tExtrm; // center value - threshold 388 if (c <= 0) return false; // local maximum must have a positive value 389 // check 8 neighbors in scale plane q 390 if (c <= neighborhood[1][0][0]) return false; 391 if (c <= neighborhood[1][1][0]) return false; 392 if (c <= neighborhood[1][2][0]) return false; 393 if (c <= neighborhood[1][0][1]) return false; 394 if (c <= neighborhood[1][2][1]) return false; 395 if (c <= neighborhood[1][0][2]) return false; 396 if (c <= neighborhood[1][1][2]) return false; 397 if (c <= neighborhood[1][2][2]) return false; 398 if (nhSize >= 10) { 399 if (c <= neighborhood[0][1][1]) return false; 400 if (c <= neighborhood[2][1][1]) return false; 401 if (nhSize >= 18) { 402 // check 4 more neighbors in scale plane q-1 403 if (c <= neighborhood[0][0][1]) return false; 404 if (c <= neighborhood[0][2][1]) return false; 405 if (c <= neighborhood[0][1][0]) return false; 406 if (c <= neighborhood[0][1][2]) return false; 407 // check 4 more neighbors in scale plane q+1 408 if (c <= neighborhood[2][0][1]) return false; 409 if (c <= neighborhood[2][2][1]) return false; 410 if (c <= neighborhood[2][1][0]) return false; 411 if (c <= neighborhood[2][1][2]) return false; 412 // optionally check 8 remaining neighbors (corners of cube): 413 if (nhSize >= 26) { 414 if (c <= neighborhood[0][0][0]) return false; 415 if (c <= neighborhood[0][2][0]) return false; 416 if (c <= neighborhood[0][0][2]) return false; 417 if (c <= neighborhood[0][2][2]) return false; 418 if (c <= neighborhood[2][0][0]) return false; 419 if (c <= neighborhood[2][2][0]) return false; 420 if (c <= neighborhood[2][0][2]) return false; 421 if (c <= neighborhood[2][2][2]) return false; 422 } 423 } 424 } 425 return true; 426 } 427 428 /* 429 * Calculates the 3-dimensional gradient vector for the 3x3x3 neighborhood 430 * nh[s][x][y]. The result is stored in the supplied vector grad, to which a reference is 431 * returned. 432 */ 433 private float[] gradient(final float[][][] nh, final float[] grad) { 434 // Note: factor 0.5f not needed, kept for clarity. 435 grad[0] = 0.5f * (nh[1][2][1] - nh[1][0][1]); // = dx 436 grad[1] = 0.5f * (nh[1][1][2] - nh[1][1][0]); // = dy 437 grad[2] = 0.5f * (nh[2][1][1] - nh[0][1][1]); // = ds 438 return grad; 439 } 440 441 /* 442 * Calculates the 3x3 Hessian matrix for the 3x3x3 neighborhood nh[s][i][j], 443 * with scale index s and spatial indices i, j. 444 * The result is stored in the supplied array hess, to which a reference is 445 * returned. 446 */ 447 private float[][] hessian(final float[][][] nh, final float[][] hess) { 448 final float nh_111 = 2 * nh[1][1][1]; 449 final float dxx = nh[1][0][1] - nh_111 + nh[1][2][1]; 450 final float dyy = nh[1][1][0] - nh_111 + nh[1][1][2]; 451 final float dss = nh[0][1][1] - nh_111 + nh[2][1][1]; 452 453 final float dxy = (nh[1][2][2] - nh[1][0][2] - nh[1][2][0] + nh[1][0][0]) * 0.25f; 454 final float dxs = (nh[2][2][1] - nh[2][0][1] - nh[0][2][1] + nh[0][0][1]) * 0.25f; 455 final float dys = (nh[2][1][2] - nh[2][1][0] - nh[0][1][2] + nh[0][1][0]) * 0.25f; 456 457 hess[0][0] = dxx; hess[0][1] = dxy; hess[0][2] = dxs; 458 hess[1][0] = dxy; hess[1][1] = dyy; hess[1][2] = dys; 459 hess[2][0] = dxs; hess[2][1] = dys; hess[2][2] = dss; 460 return hess; 461 } 462 463 /* 464 * Returns a list of orientations (angles) for the keypoint c. 465 */ 466 private List<Double> getDominantOrientations(KeyPoint c) { 467 float[] h_phi = getOrientationHistogram(c); 468 smoothCircular(h_phi, params.nSmooth); 469 return findPeakOrientations(h_phi); 470 } 471 472 // Smoothes the array A in-place (i.e., destructively) in 'iterations' passes. 473 private void smoothCircular(float[] X, int n_iter) { 474 final float[] H = { 0.25f, 0.5f, 0.25f }; // filter kernel 475 final int n = X.length; 476 for (int i = 1; i <= n_iter; i++) { 477 float s = X[0]; 478 float p = X[n - 1]; 479 for (int j = 0; j <= n - 2; j++) { 480 float c = X[j]; 481 X[j] = H[0] * p + H[1] * X[j] + H[2] * X[j + 1]; 482 p = c; 483 } 484 X[n - 1] = H[0] * p + H[1] * X[n - 1] + H[2] * s; 485 } 486 } 487 488 /* 489 * Extracts the peaks in the orientation histogram 'h_phi' 490 * and returns the corresponding angles in a (possibly empty) list. 491 */ 492 private List<Double> findPeakOrientations(float[] h_phi) { 493 int n = h_phi.length; 494 List<Double> angles = new ArrayList<Double>(n); 495 // find the maximum entry in the orientation histogram 'h_phi' 496 float h_max = h_phi[0]; 497 for (int k = 1; k < n; k++) { 498 if (h_phi[k] > h_max) 499 h_max = h_phi[k]; 500 } 501 if (h_max > 0.01f) { // ascertain minimum (non-zero) gradient energy 502 // collect all peaks > 80% of the maximum entry in 'oh' 503 float h_min = h_max * 0.8f; 504 for (int k = 0; k < n; k++) { // hp ~ hc ~ ha 505 float hc = h_phi[k]; // center value 506 if (hc > h_min) { // value is min. 80% of global peak 507 float hp = h_phi[(k - 1 + n) % n]; // previous histogram value 508 float hn = h_phi[(k + 1) % n]; // next histogram value 509 if (hc > hp && hc > hn) { // check if 'hc' is a local peak 510 // interpolate orientation by a quadratic function (parabola): 511 double delta = interpolateQuadratic(hp, hc, hn); 512 double k_max = (k + delta + n) % n; // interpolated bin index, 0 <= km < nPhi 513 double phi_max = k_max * 2 * Math.PI / n; // 0 <= phi < 2 PI. Should be in range +/-PI? 514 angles.add(phi_max); 515 } 516 } 517 } 518 } 519 return angles; 520 } 521 522 private float[] getOrientationHistogram(KeyPoint c) { 523 final int n_phi = params.nOrient; 524 final int K = params.Q; 525 526 ScaleLevel Gpq = G.getScaleLevel(c.p, c.q); 527 final float[] h_phi = new float[n_phi]; // automatically initialized to zero 528 final int M = Gpq.getWidth(), N = Gpq.getHeight(); 529 final double x = c.x, y = c.y; 530 531 final double sigma_w = 1.5 * params.sigma0 * Math.pow(2,(double)c.q/K); 532 final double sigma_w22 = 2 * sigma_w * sigma_w; 533 final double r_w = Math.max(1, 2.5 * sigma_w); 534 final double r_w2 = r_w * r_w; 535 536 final int u_min = Math.max((int)Math.floor(x - r_w), 1); 537 final int u_max = Math.min((int)Math.ceil(x + r_w), M-2); 538 final int v_min = Math.max((int)Math.floor(y - r_w), 1); 539 final int v_max = Math.min((int)Math.ceil(y + r_w), N-2); 540 541 double[] gradPol = new double[2]; // gradient magnitude/orientation 542 543 for (int u = u_min; u <= u_max; u++) { 544 double dx = u - x; // distance to feature's center 545 for (int v = v_min; v <= v_max; v++) { 546 double dy = v - y; 547 double r2 = dx * dx + dy * dy; // squared distance from center 548 if (r2 < r_w2) { // inside limiting circle 549 Gpq.getGradientPolar(u, v, gradPol); 550 double E = gradPol[0], phi = gradPol[1]; // gradient magnitude/orientation 551 double wG = Math.exp(-(dx*dx + dy*dy)/sigma_w22); // Gaussian weight 552 double z = E * wG; 553 double k_phi = n_phi * phi / (2 * Math.PI); // continuous histogram bin index 554 double alpha = k_phi - Math.floor(k_phi); // weight alpha 555 int k_0 = Math.floorMod((int)Math.floor(k_phi), n_phi); // lower histogram index 556 int k_1 = Math.floorMod(k_0 + 1, n_phi); // upper histogram index 557 h_phi[k_0] = (float) (h_phi[k_0] + (1 - alpha) * z); // distribute z into bins k_0, k_1 558 h_phi[k_1] = (float) (h_phi[k_1] + alpha * z); 559 } 560 } 561 } 562 return h_phi; 563 } 564 565 private SiftDescriptor makeSiftDescriptor(KeyPoint c, double phi_d) { 566 final int p = c.p; 567 final int q = c.q; 568 final double x = c.x; 569 final double y = c.y; 570 final double mag = c.magnitude; 571 572 ScaleLevel Gpq = G.getScaleLevel(p, q); 573 final int M = Gpq.getWidth(), N = Gpq.getHeight(), K = G.getQ(); 574 575 double sigma_q = G.getSigma_0() * Math.pow(2, (double) q / K); // = Gpq.getAbsoluteScale() ?? decimated scale 576 double w_d = params.sDesc * sigma_q; // descriptor width 577 double sigma_d = 0.25 * w_d; // width of Gaussian weighting function 578 double sigma_d2 = 2 * sigma_d * sigma_d; 579 double r_d = 2.5 * sigma_d; // limiting radius 580 double r_d2 = r_d * r_d; // squared limiting radius 581 582 double sc = 1.0/w_d; // scale to canonical frame 583 double sin_phi_d = Math.sin(-phi_d); // precalculated sine 584 double cos_phi_d = Math.cos(-phi_d); // precalculated cosine 585 586 int u_min = Math.max((int)Math.floor(x - r_d), 1); 587 int u_max = Math.min((int)Math.ceil(x + r_d), M - 2); 588 589 int v_min = Math.max((int)Math.floor(y - r_d), 1); 590 int v_max = Math.min((int)Math.ceil(y + r_d), N - 2); 591 592 // create the 3D orientation histogram, initialize to zero: 593 final int n_Spat = params.nSpat; 594 final int n_Angl = params.nAngl; 595 double[][][] h_grad = new double[n_Spat][n_Spat][n_Angl]; 596 double[] gmo = new double[2]; // gradient magnitude/orientation 597 598 for (int u = u_min; u <= u_max; u++) { 599 double dx = u - x; 600 for (int v = v_min; v <= v_max; v++) { 601 double dy = v - y; 602 double r2 = sqr(dx) + sqr(dy); // squared distance from center 603 if (r2 < r_d2) { // inside limiting circle 604 // map to the canonical coordinate frame, ii,jj \in [-1/2, +1/2]: 605 double uu = sc * (cos_phi_d * dx - sin_phi_d * dy); 606 double vv = sc * (sin_phi_d * dx + cos_phi_d * dy); 607 // calculate the gradient of Gaussian scale level (p,q) at position (u,v): 608 Gpq.getGradientPolar(u, v, gmo); 609 double E = gmo[0]; // gradient magnitude 610 double phi = gmo[1]; // gradient orientation 611 double phi_norm = mod(phi - phi_d, PI2);// normalized gradient orientation 612 double w_G = Math.exp(-r2/sigma_d2); // Gaussian weight 613 double z = E * w_G; // quantity to accumulate 614 updateGradientHistogram(h_grad, uu, vv, phi_norm, z); 615 } 616 } 617 } 618 int[] f_int = makeFeatureVector(h_grad); 619 double sigma_pq = G.getAbsoluteScale(p, q); 620 double x_real = G.getRealX(p, x); 621 double y_real = G.getRealY(p, y); 622 return new SiftDescriptor(x_real, y_real, sigma_pq, p, mag, phi_d, f_int); 623 } 624 625 private void updateGradientHistogram(double[][][] h_grad, double uu, double vv, double phi_norm, double z) { 626 final int n_Spat = params.nSpat; 627 final int n_Angl = params.nAngl; 628 629 final double ii = n_Spat * uu + 0.5 * (n_Spat - 1); // continuous spatial histogram index i' 630 final double jj = n_Spat * vv + 0.5 * (n_Spat - 1); // continuous spatial histogram index j' 631 final double kk = phi_norm * (n_Angl / PI2); // continuous orientation histogram index k' 632 633 final int i0 = (int) Math.floor(ii); 634 final int i1 = i0 + 1; 635 636 final int j0 = (int) Math.floor(jj); 637 final int j1 = j0 + 1; 638 639 final int k0 = Math.floorMod((int) Math.floor(kk), n_Angl); 640 final int k1 = (k0 + 1) % n_Angl; // k0 >= 0 641 642 final double alpha0 = 1.0 - (ii - i0); 643 final double alpha1 = 1.0 - alpha0; 644 645 final double beta0 = 1.0 - (jj - j0); 646 final double beta1 = 1.0 - beta0; 647 648 final double gamma0 = 1.0 - (kk - Math.floor(kk)); 649 final double gamma1 = 1.0 - gamma0; 650 651 final int[] I = {i0, i1}; // index arrays used in loops below 652 final int[] J = {j0, j1}; 653 final int[] K = {k0, k1}; 654 655 final double[] A = {alpha0, alpha1}; 656 final double[] B = {beta0, beta1}; 657 final double[] C = {gamma0, gamma1}; 658 659 // distribute z over 8 adjacent spatial/angular bins: 660 for (int a = 0; a <= 1; a++) { 661 int i = I[a]; 662 if (i >= 0 && i < n_Spat) { 663 double wa = A[a]; 664 for (int b = 0; b <= 1; b++) { 665 int j = J[b]; 666 if (j >= 0 && j < n_Spat) { 667 double wb = B[b]; 668 for (int c = 0; c <= 1; c++) { 669 int k = K[c]; 670 double wc = C[c]; 671 h_grad[i][j][k] = h_grad[i][j][k] + z * wa * wb * wc; 672 673 } 674 } 675 } 676 } 677 } 678 } 679 680 private int[] makeFeatureVector(double[][][] h_grad) { 681 final int n_Spat = params.nSpat; 682 final int n_Angl = params.nAngl; 683 float[] f = new float[n_Spat * n_Spat * n_Angl]; 684 // flatten 3D histogram to a 1D vector 685 // the histogram is vectorized such that k (phi) is the fastest 686 // varying index, followed by j and i (which is the slowest index). 687 int m = 0; 688 for (int i = 0; i < n_Spat; i++) { 689 for (int j = 0; j < n_Spat; j++) { 690 for (int k = 0; k < n_Angl; k++) { 691 f[m] = (float) h_grad[i][j][k]; 692 m = m + 1; 693 } 694 } 695 } 696 normalize(f); 697 clipPeaks(f, (float) params.tFclip); 698 normalize(f); 699 return mapToIntegers(f, (float) params.sFscale); 700 } 701 702 private void normalize(float[] x) { 703 final double norm = Matrix.normL2(x); 704 if (norm > Arithmetic.EPSILON_FLOAT) { 705 final float s = (float) (1.0 / norm); 706 for (int i = 0; i < x.length; i++) { 707 x[i] = s * x[i]; 708 } 709 } 710 } 711 712 private void clipPeaks(float[] x, float xmax) { 713 for (int i = 0; i<x.length; i++) { 714 if (x[i] > xmax) { 715 x[i] = xmax; 716 } 717 } 718 } 719 720 private int[] mapToIntegers(float[] x, float s) { 721 int[] ivec = new int[x.length]; 722 for (int i = 0; i < x.length; i++) { 723 ivec[i] = Math.round(s * x[i]); 724 } 725 return ivec; 726 } 727 728 // auxiliary methods ------------------------- 729 730 /* 731 * Calculate the extremal position from 3 discrete function values 732 * at x = -1, 0, +1: f(-1) = 'y1', f(0) = 'y2', f(+1) = 'y3'. 733 */ 734 private float interpolateQuadratic(float y1, float y2, float y3) { 735 float a = (y1 - 2*y2 + y3) / 2; 736 if (Math.abs(a) < 0.00001f) { 737 throw new IllegalArgumentException("quadratic interpolation failed " 738 + a + " " + y1 + " " + y2 + " " + y3); 739 } 740 float b = (y3 - y1) / 2; 741// float c = y2; 742 float x_extrm = -b / (2*a); // extremal position 743// float y_extrm = a*x*x + b*x + c; // extremal value (not needed) 744 return x_extrm; // x is in [-1,+1] 745 } 746 747}