001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.regions; 011 012import ij.process.ByteProcessor; 013import imagingbook.common.geometry.basic.NeighborhoodType2D; 014 015/** 016 * <p> 017 * Binary region segmentation based on a recursive (depth-first) flood filling algorithm. See Sec. 8.1.1 (Alg. 8.2) of 018 * [1] for additional details. Note that this implementation may easily run out of stack space and should be used for 019 * demonstration purposes only. 020 * </p> 021 * <p> 022 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 023 * (2022). 024 * </p> 025 * 026 * @author WB 027 * @version 2022/09/28 revised 028 */ 029public class RecursiveSegmentation extends BinaryRegionSegmentation { 030 031 /** 032 * Constructor. Creates a new region segmentation from the specified image, which is not modified. The input image 033 * is considered binary, with 0 values for background pixels and values ≠ 0 for foreground pixels. The 034 * 4-neighborhood is used by default ({@link BinaryRegionSegmentation#DefaultNeighborhoodT}). 035 * 036 * @param ip the binary input image to be segmented 037 */ 038 public RecursiveSegmentation(ByteProcessor ip) { 039 this(ip, DefaultNeighborhoodT); 040 } 041 042 /** 043 * Constructor. Creates a new region segmentation from the specified image and neighborhood type (4- or 044 * 8-neighborhood). The input image is considered binary, with 0 values for background pixels and values ≠ 0 for 045 * foreground pixels. 046 * 047 * @param ip the binary input image to be segmented 048 * @param nh the neighborhood type (4- or 8-neighborhood) 049 */ 050 public RecursiveSegmentation(ByteProcessor ip, NeighborhoodType2D nh) { 051 super(ip, nh); 052 } 053 054 @Override 055 boolean applySegmentation(ByteProcessor ip) { 056 try{ 057 for (int v = 0; v < height; v++) { 058 for (int u = 0; u < width; u++) { 059 if (getLabel(u, v) == Foreground) { // = unlabeled foreground 060 // start a new region 061 int label = getNextLabel(); 062 floodFill(u, v, label); 063 } 064 } 065 } 066 } catch(StackOverflowError e) { 067 return false; 068 } 069 return true; 070 } 071 072 private void floodFill(int x, int y, int label) { 073 if ((x >= 0) && (x < width) && (y >= 0) && (y < height) && getLabel(x, y) == Foreground) { 074 setLabel(x, y, label); 075 floodFill(x + 1, y, label); 076 floodFill(x, y + 1, label); 077 floodFill(x, y - 1, label); 078 floodFill(x - 1, y, label); 079 if (NT == NeighborhoodType2D.N8) { 080 floodFill(x + 1, y + 1, label); 081 floodFill(x - 1, y + 1, label); 082 floodFill(x + 1, y - 1, label); 083 floodFill(x - 1, y - 1, label); 084 } 085 } 086 } 087 088}