001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.noise.perlin;
011
012import imagingbook.common.math.Matrix;
013import imagingbook.common.math.Matrix.IncompatibleDimensionsException;
014import imagingbook.common.noise.hashing.HashFunction;
015
016/**
017 * <p>
018 * This class implements an N-dimensional Perlin noise [1] generator. See Ch. 8 of [2] for details.
019 * </p>
020 * <p>
021 * [1] K. Perlin. Improving noise. In "SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and
022 * Interactive Techniques", pp. 681–682, San Antonio, Texas (2002).<br> [2] W. Burger and M.J. Burge. "Principles of
023 * Digital Image Processing - Advanced Methods" (Vol. 3). Undergraduate Topics in Computer Science. Springer-Verlag,
024 * London (2013).
025 * </p>
026 *
027 * @author WB
028 * @version 2022/11/24
029 */
030public class PerlinNoiseGeneratorNd extends PerlinNoiseGenerator {
031        
032        private final int N;            // dimensionality
033        private final int K;            // number of hypercube vertices, default 2
034        private final int[][] Q;        // vertex coordinates of the unit hypercube
035                
036        /**
037         * Constructor.
038         * @param N number of dimensions
039         * @param f_min minimum frequency
040         * @param f_max maximum frequency
041         * @param persistence persistence
042         * @param hf hash function
043         */
044        public PerlinNoiseGeneratorNd(int N, double f_min, double f_max, double persistence, HashFunction hf) {
045                super(f_min, f_max, persistence, hf);
046                this.N = N;
047                this.K = (int) Math.pow(2, N);  // number of hypercube vertices
048                this.Q = new int[K][N];                 // vertices of the unit hypercube
049                for (int j = 0; j < K; j++) {
050                        Q[j] = vertex(j, N);
051                }
052        }
053
054        /**
055         * N-dim combined (multi-frequency) Perlin noise function.
056         *
057         * @param X Interpolation position X (N-dimensional).
058         * @return The value of the combined Perlin noise function for the N-dimensional position X.
059         */
060        public double getNoiseValue(double[] X) {
061                double sum = 0;
062                for (int i = 0; i < F.length; i++) { // for all frequencies
063                        sum = sum + A[i] * noise(Matrix.multiply(F[i], X));
064                }
065                return sum;
066        }
067
068        /**
069         * 2D elementary (single-frequency) Perlin noise function.
070         *
071         * @param X Interpolation position X (N-dimensional).
072         * @return The value of the elementary Perlin noise function for the N-dimensional position X.
073         */
074        private double noise(double[] X) {
075                int[] P0 = floor(X);            // origin of hypercube around X
076                 
077                // get the 2^N gradient vectors for all hypercube corners:
078                double[][] G = new double[K][N];
079                for(int j=0; j<K; j++) {        
080                        G[j] = gradient(add(P0,Q[j]));                  // gradient vector at cube corner j
081                }
082                
083                double[] X01 = subtract(X,P0);                                  // X01[k] are in [0,1]
084                
085                // get the 2^N gradient values at all vertices for position X
086                double[] W = new double[K];
087                for (int j = 0; j < K; j++) {   
088                        W[j] = Matrix.dotProduct(G[j], subtract(X01, Q[j]));
089                }
090                
091                return interpolate(X01, W, 0);
092        }
093
094        /**
095         * @param p discrete position.
096         * @return A pseudo-random gradient vector for the discrete lattice point p (N-dimensional).
097         */
098        private double[] gradient(int[] p) {    
099                if (p.length == 2) {
100                        return gradient(p[0],p[1]);
101                }
102                // hash() always returns a new double[], g[i] in [0,1]
103                double[] g = hashFun.hash(p);   // STILL TO BE DONE!!!
104                for (int i=0; i<g.length; i++) {
105                        g[i] = 2.0 * g[i] - 1;
106                }
107                return g;
108        }
109
110        /**
111         * Local interpolation function (recursive).
112         *
113         * @param X01 Interpolation position in [0,1]^N
114         * @param WW A vector of length 2^(N-d) with the tangent values for the hypercube corners.
115         * @param k The interpolation dimension (axis).
116         * @return The interpolated noise value at position X01.
117         */
118        private double interpolate(double[] X01, double[] WW, int k) {
119                if (WW.length == 1) { // (d == N)
120                        return WW[0]; // done, end of recursion
121                } else { // d < N
122                        double x01 = X01[k]; // select dimension d of vector X
123                        double s = this.s(x01); // blending function
124                        int M = WW.length / 2;
125                        double[] W = new double[M]; // W is half the length of WW
126                        for (int i = 0; i < M; i++) {
127                                double wa = WW[2 * i];
128                                double wb = WW[2 * i + 1];
129                                W[i] = (1 - s) * wa + s * wb; // the actual interpolation
130                        }
131                        return interpolate(X01, W, k + 1);
132                }
133        }
134
135        /**
136         * @param j Vertex number (0..2^N-1)
137         * @param N Dimension of the hypercube
138         * @return The coordinate vector for vertex j of the N-dimensional
139         * hypercube.
140         */
141        private int[] vertex(int j, int N) { 
142                int[] v = new int[N];
143                // copy the bit representation of j into v,
144                // v[0] is the most significant bit 
145                for (int k = 0; k < N; k++) {
146                         v[k] = j & 0x00000001;         // select least significant bit (bit 0)
147                         j = j >>> 1;                           // j <- j/2
148                }
149                return v;
150        }
151        
152        // from 2D example
153        private double[] gradient(int i, int j) {
154                double[] g = hashFun.hash(i,j);         // hash() always returns a new double[]
155                g[0] = 2.0 * g[0] - 1;
156                g[1] = 2.0 * g[1] - 1;
157                return g;
158        }
159        
160        private double[] subtract(double[] a, int[] b) {
161                if (a.length != b.length)
162                        throw new IncompatibleDimensionsException();
163                final int n = a.length;
164                double[] c = new double[n];
165                for (int i = 0; i < n; i++) {
166                        c[i] = a[i] - b[i];
167                }
168                return c;
169        }
170        
171        private int[] add(int[] a, int[] b) {
172                if (a.length != b.length)
173                        throw new IncompatibleDimensionsException();
174                final int n = a.length;
175                int[] c = new int[n];
176                for (int i = 0; i < n; i++) {
177                        c[i] = c[i] + b[i];
178                }
179                return c;
180        }
181        
182        private int[] floor(double[] a) {
183                int[] b = new int[a.length];
184                for (int i = 0; i < a.length; i++) {
185                        b[i] = (int) Math.floor(a[i]);
186                }
187                return b;
188        }
189
190}