001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.noise.perlin; 011 012import imagingbook.common.math.Matrix; 013import imagingbook.common.math.Matrix.IncompatibleDimensionsException; 014import imagingbook.common.noise.hashing.HashFunction; 015 016/** 017 * <p> 018 * This class implements an N-dimensional Perlin noise [1] generator. See Ch. 8 of [2] for details. 019 * </p> 020 * <p> 021 * [1] K. Perlin. Improving noise. In "SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and 022 * Interactive Techniques", pp. 681–682, San Antonio, Texas (2002).<br> [2] W. Burger and M.J. Burge. "Principles of 023 * Digital Image Processing - Advanced Methods" (Vol. 3). Undergraduate Topics in Computer Science. Springer-Verlag, 024 * London (2013). 025 * </p> 026 * 027 * @author WB 028 * @version 2022/11/24 029 */ 030public class PerlinNoiseGeneratorNd extends PerlinNoiseGenerator { 031 032 private final int N; // dimensionality 033 private final int K; // number of hypercube vertices, default 2 034 private final int[][] Q; // vertex coordinates of the unit hypercube 035 036 /** 037 * Constructor. 038 * @param N number of dimensions 039 * @param f_min minimum frequency 040 * @param f_max maximum frequency 041 * @param persistence persistence 042 * @param hf hash function 043 */ 044 public PerlinNoiseGeneratorNd(int N, double f_min, double f_max, double persistence, HashFunction hf) { 045 super(f_min, f_max, persistence, hf); 046 this.N = N; 047 this.K = (int) Math.pow(2, N); // number of hypercube vertices 048 this.Q = new int[K][N]; // vertices of the unit hypercube 049 for (int j = 0; j < K; j++) { 050 Q[j] = vertex(j, N); 051 } 052 } 053 054 /** 055 * N-dim combined (multi-frequency) Perlin noise function. 056 * 057 * @param X Interpolation position X (N-dimensional). 058 * @return The value of the combined Perlin noise function for the N-dimensional position X. 059 */ 060 public double getNoiseValue(double[] X) { 061 double sum = 0; 062 for (int i = 0; i < F.length; i++) { // for all frequencies 063 sum = sum + A[i] * noise(Matrix.multiply(F[i], X)); 064 } 065 return sum; 066 } 067 068 /** 069 * 2D elementary (single-frequency) Perlin noise function. 070 * 071 * @param X Interpolation position X (N-dimensional). 072 * @return The value of the elementary Perlin noise function for the N-dimensional position X. 073 */ 074 private double noise(double[] X) { 075 int[] P0 = floor(X); // origin of hypercube around X 076 077 // get the 2^N gradient vectors for all hypercube corners: 078 double[][] G = new double[K][N]; 079 for(int j=0; j<K; j++) { 080 G[j] = gradient(add(P0,Q[j])); // gradient vector at cube corner j 081 } 082 083 double[] X01 = subtract(X,P0); // X01[k] are in [0,1] 084 085 // get the 2^N gradient values at all vertices for position X 086 double[] W = new double[K]; 087 for (int j = 0; j < K; j++) { 088 W[j] = Matrix.dotProduct(G[j], subtract(X01, Q[j])); 089 } 090 091 return interpolate(X01, W, 0); 092 } 093 094 /** 095 * @param p discrete position. 096 * @return A pseudo-random gradient vector for the discrete lattice point p (N-dimensional). 097 */ 098 private double[] gradient(int[] p) { 099 if (p.length == 2) { 100 return gradient(p[0],p[1]); 101 } 102 // hash() always returns a new double[], g[i] in [0,1] 103 double[] g = hashFun.hash(p); // STILL TO BE DONE!!! 104 for (int i=0; i<g.length; i++) { 105 g[i] = 2.0 * g[i] - 1; 106 } 107 return g; 108 } 109 110 /** 111 * Local interpolation function (recursive). 112 * 113 * @param X01 Interpolation position in [0,1]^N 114 * @param WW A vector of length 2^(N-d) with the tangent values for the hypercube corners. 115 * @param k The interpolation dimension (axis). 116 * @return The interpolated noise value at position X01. 117 */ 118 private double interpolate(double[] X01, double[] WW, int k) { 119 if (WW.length == 1) { // (d == N) 120 return WW[0]; // done, end of recursion 121 } else { // d < N 122 double x01 = X01[k]; // select dimension d of vector X 123 double s = this.s(x01); // blending function 124 int M = WW.length / 2; 125 double[] W = new double[M]; // W is half the length of WW 126 for (int i = 0; i < M; i++) { 127 double wa = WW[2 * i]; 128 double wb = WW[2 * i + 1]; 129 W[i] = (1 - s) * wa + s * wb; // the actual interpolation 130 } 131 return interpolate(X01, W, k + 1); 132 } 133 } 134 135 /** 136 * @param j Vertex number (0..2^N-1) 137 * @param N Dimension of the hypercube 138 * @return The coordinate vector for vertex j of the N-dimensional 139 * hypercube. 140 */ 141 private int[] vertex(int j, int N) { 142 int[] v = new int[N]; 143 // copy the bit representation of j into v, 144 // v[0] is the most significant bit 145 for (int k = 0; k < N; k++) { 146 v[k] = j & 0x00000001; // select least significant bit (bit 0) 147 j = j >>> 1; // j <- j/2 148 } 149 return v; 150 } 151 152 // from 2D example 153 private double[] gradient(int i, int j) { 154 double[] g = hashFun.hash(i,j); // hash() always returns a new double[] 155 g[0] = 2.0 * g[0] - 1; 156 g[1] = 2.0 * g[1] - 1; 157 return g; 158 } 159 160 private double[] subtract(double[] a, int[] b) { 161 if (a.length != b.length) 162 throw new IncompatibleDimensionsException(); 163 final int n = a.length; 164 double[] c = new double[n]; 165 for (int i = 0; i < n; i++) { 166 c[i] = a[i] - b[i]; 167 } 168 return c; 169 } 170 171 private int[] add(int[] a, int[] b) { 172 if (a.length != b.length) 173 throw new IncompatibleDimensionsException(); 174 final int n = a.length; 175 int[] c = new int[n]; 176 for (int i = 0; i < n; i++) { 177 c[i] = c[i] + b[i]; 178 } 179 return c; 180 } 181 182 private int[] floor(double[] a) { 183 int[] b = new int[a.length]; 184 for (int i = 0; i < a.length; i++) { 185 b[i] = (int) Math.floor(a[i]); 186 } 187 return b; 188 } 189 190}