001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.noise.perlin;
011
012import imagingbook.common.noise.hashing.HashFunction;
013
014/**
015 * <p>
016 * This class implements a 2D Perlin noise [1] generator. See Ch. 8 of [2] for details.
017 * </p>
018 * <p>
019 * [1] K. Perlin. Improving noise. In "SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and
020 * Interactive Techniques", pp. 681–682, San Antonio, Texas (2002).<br> [2] W. Burger and M.J. Burge. "Principles of
021 * Digital Image Processing - Advanced Methods" (Vol. 3). Undergraduate Topics in Computer Science. Springer-Verlag,
022 * London (2013).
023 * </p>
024 *
025 * @author WB
026 * @version 2022/11/24
027 */
028public class PerlinNoiseGenerator2d extends PerlinNoiseGenerator {
029        
030        /**
031         * Constructor.
032         * @param f_min minimum frequency
033         * @param f_max maximum frequency
034         * @param persistence persistence
035         * @param hf hash function
036         */
037        public PerlinNoiseGenerator2d(double f_min, double f_max, double persistence, HashFunction hf) {
038                super(f_min, f_max, persistence, hf);
039        }
040
041        /**
042         * 2D combined (multi-frequency) Perlin noise function. Returns the value of the combined Perlin noise function for
043         * the two-dimensional position (x,y).
044         *
045         * @param x interpolation position x
046         * @param y interpolation position y
047         * @return the noise value for position (x,y)
048         */
049        public double getNoiseValue(double x, double y) {
050                double sum = 0;
051                for (int i = 0; i < F.length; i++) {
052                        sum = sum + A[i] * noise(F[i] * x, F[i] * y);
053                }
054                return sum;
055        }
056        
057        /**
058         * 2D elementary (single-frequency) Perlin noise function. 
059         * @param x Interpolation position x.
060         * @param y Interpolation position y.
061         * @return The value of the elementary Perlin
062         * noise function for the two-dimensional position (x,y).
063         */
064        private double noise(double x, double y) {
065                int px = ffloor(x);
066                int py = ffloor(y);
067                double[] g00 = gradient(px, py);
068                double[] g10 = gradient(px + 1, py);
069                double[] g01 = gradient(px, py + 1);
070                double[] g11 = gradient(px + 1, py + 1);
071                double x01 = x - px; // x01 is in [0,1]
072                double y01 = y - py; // y01 is in [0,1]
073                double w00 = g00[0] * (x01) + g00[1] * (y01);
074                double w10 = g10[0] * (x01 - 1) + g10[1] * (y01);
075                double w01 = g01[0] * (x01) + g01[1] * (y01 - 1);
076                double w11 = g11[0] * (x01 - 1) + g11[1] * (y01 - 1);
077                return interpolate(x01, y01, w00, w10, w01, w11);
078        }
079        
080        /**
081         * @param px discrete horiz. position
082         * @param py discrete vert. position
083         * @return A pseudo-random gradient vector for the discrete position (px,py).
084         */
085        private double[] gradient(int px, int py) {
086                double[] g = hashFun.hash(px, py); // hash() always returns a new double[] in [0,1]
087                g[0] = 2.0 * g[0] - 1;
088                g[1] = 2.0 * g[1] - 1;
089                return g;
090        }
091
092        /**
093         * Local interpolation function.
094         * @param x01 Horizontal interpolation position in [0,1]
095         * @param y01 Vertical interpolation position in [0,1]
096         * @param w00 Tangent value for position (0,0).
097         * @param w01 Tangent value for position (1,0).
098         * @param w10 Tangent value for position (0,1).
099         * @param w11 Tangent value for position (1,1).
100         * @return  The interpolated noise value at position (x01,y01).
101         */
102        private double interpolate(double x01, double y01, double w00, double w10, double w01, double w11) { 
103                double sx = this.s(x01); 
104                double w0 = (1 - sx) * w00 + sx * w10;
105                double w1 = (1 - sx) * w01 + sx * w11;
106                double sy = this.s(y01);
107                double w = (1 - sy) * w0 + sy * w1;
108                return w;
109        }       
110
111}