001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.noise.perlin;
011
012import imagingbook.common.noise.hashing.HashFunction;
013
014/**
015 * <p>
016 * This class implements a 1-dimensional Perlin noise [1] generator. See Ch. 8 of [2] for details.
017 * </p>
018 * <p>
019 * [1] K. Perlin. Improving noise. In "SIGGRAPH’02: Proceedings of the 29th Annual Conference on Computer Graphics and
020 * Interactive Techniques", pp. 681–682, San Antonio, Texas (2002).<br> [2] W. Burger and M.J. Burge. "Principles of
021 * Digital Image Processing - Advanced Methods" (Vol. 3). Undergraduate Topics in Computer Science. Springer-Verlag,
022 * London (2013).
023 * </p>
024 *
025 * @author WB
026 * @version 2022/11/24
027 */
028public class PerlinNoiseGenerator1d extends PerlinNoiseGenerator {
029        
030        /**
031         * Constructor.
032         * @param f_min minimum frequency
033         * @param f_max maximum frequency
034         * @param persistence persistence
035         * @param hf hash function
036         */
037        public PerlinNoiseGenerator1d(double f_min, double f_max, double persistence, HashFunction hf) {
038                super(f_min, f_max, persistence, hf);
039        }
040
041        /**
042         * 1D combined (multi-frequency) Perlin noise function. Returns the value of the combined Perlin noise function for
043         * the one-dimensional position x.
044         *
045         * @param x interpolation position
046         * @return the multi-frequency noise value for position x
047         */
048        public double getNoiseValue(double x) {
049                double sum = 0;
050                for (int i = 0; i < F.length; i++) {
051                        sum = sum + A[i] * noise(F[i] * x);
052                }
053                return sum;
054        }
055
056        /**
057         * 1D elementary (single-frequency) Perlin noise function.
058         *
059         * @param x Interpolation position.
060         * @return The value of the elementary Perlin noise function for the one-dimensional position x.
061         */
062        private double noise(double x) {
063                int p0 = ffloor(x);
064                double g0 = gradient(p0);
065                double g1 = gradient(p0 + 1);
066                double x01 = x - p0;
067                double w0 = g0 * x01;
068                double w1 = g1 * (x01 - 1);
069                return interpolate(x01, w0, w1);
070        }
071
072        /**
073         * @param p discrete position.
074         * @return A pseudo-random gradient value for the discrete position p.
075         */
076        private double gradient(int p) {
077                return 2.0 * hashFun.hash(p) - 1;
078        }
079        
080        /**
081         * Local interpolation function.
082         * @param x01 The interpolation position in [0,1]
083         * @param w0 Tangent value for x=0.
084         * @param w1 Tangent value for x=1.
085         * @return The interpolated noise value at position x01.
086         */
087        private double interpolate(double x01, double w0, double w1) { // local interpolation function (x01 is in [0,1])
088                double s = this.s(x01); 
089                return (1 - s) * w0 + s * w1;
090        }
091}