001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.noise.perlin; 011 012import imagingbook.common.noise.hashing.Hash32Shift; 013import imagingbook.common.noise.hashing.HashFunction; 014 015/** 016 * <p> 017 * Gradient (Perlin) noise implementation (see [1] for a detailed description). This is the super-class for all other 018 * Perlin noise generators (1D, 2D, N-dimensional). 019 * </p> 020 * <p> 021 * [1] W. Burger, M.J. Burge, <em>Principles of Digital Image Processing – Advanced Methods</em> (Vol. 3), 022 * Supplementary Chapter 8: "Synthetic Gradient Noise", Springer (2013). <a href= 023 * "https://dx.doi.org/10.13140/RG.2.1.3427.7284">https://dx.doi.org/10.13140/RG.2.1.3427.7284</a> 024 * </p> 025 * 026 * @author WB 027 * @version 2022/11/24 028 */ 029public abstract class PerlinNoiseGenerator { 030 031 private final double f_min; 032 private final double f_max; 033 private final int oct; 034 private final double persistence; // persistence (phi) 035 036 final double[] F; // frequencies f_i 037 final double[] A; // amplitudes a_i 038 final HashFunction hashFun; 039 040 /** 041 * Constructor (non-public). 042 */ 043 PerlinNoiseGenerator(double f_min, double f_max, double persistence, HashFunction hash) { 044 if (f_max < f_min) { 045 throw new IllegalArgumentException("f_max must not be less than f_min"); 046 } 047 this.f_min = f_min; 048 this.f_max = f_max; 049 this.oct = getFrequencySteps(f_min, f_max); 050 this.F = new double[oct]; 051 this.A = new double[oct]; 052 this.persistence = persistence; 053 this.hashFun = (hash != null) ? hash : new Hash32Shift(); // default 054 this.makeFrequencies(f_min, f_max); 055 } 056 057 /** 058 * Perlin's improved "fading" function s(x) 059 * 060 * @param x interpolation position in [0,1] 061 * @return s(x) = 10 x^3 - 15 x^4 + 6 x^5 062 */ 063 double s(double x) { 064 return x * x * x * (x * (x * 6 - 15) + 10); 065 } 066 067 // ----------------- helper methods: ---------------------------- 068 069 private void makeFrequencies(double fmin, double fmax) { 070 int n = 0; 071 double f = f_min; 072 double a = 1; 073 while (f <= f_max && n < oct) { 074 F[n] = f; 075 A[n] = a; 076 n = n + 1; 077 f = 2 * f; 078 a = persistence * a; 079 } 080 } 081 082 private int getFrequencySteps(double fmin, double fmax) { // TODO: should not be public! 083 int i = 0; 084 double f = fmin; 085 while (f <= fmax) { 086 i = i + 1; 087 f = 2 * f; 088 } 089 return i; 090 } 091 092 /** 093 * Fast floor method (by Gustavson?) 094 * @param x argument 095 * @return floor(x), works for pos. and neg. x. 096 */ 097 int ffloor(double x) { 098 int xint = (int) x; 099 return (xint < x) ? xint : xint - 1; 100 } 101 102 // ----------------------------------------------- 103 104 /** 105 * Returns an array with the frequencies f_i used for generating the noise function 106 * @return an array of frequencies 107 */ 108 public double[] getFrequencies() { 109 return F; 110 } 111 112 /** 113 * Returns an array with the amplitudes a_i used for generating * the noise function. 114 * 115 * @return an array of amplitudes 116 */ 117 public double[] getAmplitudes() { 118 return A; 119 } 120 121}