001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.noise.hashing; 011 012/** 013 * <p> 014 * Permutation-based hash function, similar to the one proposed in [1]. See [2] for details. 015 * </p> 016 * <p> 017 * [1] K. Perlin. An image synthesizer. SIGGRAPH Computer Graphics 19(3), 287–296 (1985). <br> [2] W. Burger, M.J. 018 * Burge, <em>Principles of Digital Image Processing – Advanced Methods</em> (Vol. 3), Supplementary Chapter 8: 019 * "Synthetic Gradient Noise", Springer (2013). <a href= 020 * "https://dx.doi.org/10.13140/RG.2.1.3427.7284">https://dx.doi.org/10.13140/RG.2.1.3427.7284</a> 021 * </p> 022 * 023 * @author WB 024 * @version 2022/11/24 025 */ 026public class HashPermute implements HashFunction { 027 028 private final int seed; 029 030 /** 031 * Constructor, creates a hash function with a random seed value. 032 */ 033 HashPermute() { 034 this(0); 035 } 036 037 /** 038 * Constructor creating a hash function with the specified seed value. 039 * @param seed the random seed value (set to 0 use a random seed value). 040 */ 041 public HashPermute(int seed) { 042 this.seed = HashFunction.getRandomSeed(seed); 043 } 044 045 @Override 046 public double hash(int u) { 047 int h = h8(u); 048 return (double) (h & 0xFF) / 0xFF; // use bits 0..7 for d 049 } 050 051 // 6 bits per channel (overlapping blocks) 052 @Override 053 public double[] hash(int u, int v) { 054 final int M = 0x3F; // 63; 055 int h = h8(u, v); 056 double hx = h & M; // use bits 0..5 for dx 057 double hy = (h >> 2) & M; // use bits 2..7 for dy 058 return new double[] {hx/M, hy/M}; 059 } 060 061 @Override 062 public double[] hash(int u, int v, int w) { 063 final int M = 0x0F; 064 int h = h8(u, v, w); 065 double hx = h & M; // use bits 0..3 for x 066 double hy = ((h >> 2) & M); // use bits 2..5 for y 067 double hz = ((h >> 4) & M); // use bits 4..7 for z 068 return new double[] {hx/M, hy/M, hz/M}; 069 } 070 071 // 2 dimensions 072 private int h8 (int u) { 073 u = (u + seed) & 0xFF; 074 return P[u]; 075 } 076 077 // 2 dimensions 078 private int h8 (int u, int v) { 079 u = (u + seed) & 0xFF; 080 v = v & 0xFF; 081 return P[P[v] + u]; 082 } 083 084 // 3 dimensions 085 private int h8 (int u, int v, int w) { 086 u = (u + seed) & 0xFF; 087 v = v & 0xFF; 088 w = w & 0xFF; 089 return P[P[P[w] + v] + u]; 090 } 091 092 093 /** 094 * N-dimensional permutation hash; this version does not use any bit splitting. Instead, the hash8() function is 095 * applied repeatedly for every gradient dimension by using the dimension number (k) as a local seed (sd) - in 096 * addition to the global seed (seed). 097 */ 098 @Override 099 public double[] hash(int[] p) { 100 int N = p.length; 101 double[] g = new double[N]; 102 for (int k = 0; k < N; k++) { // dimension k 103 int h = h8(p, k + seed); 104 g[k] = (double) (h & 0xFF) / 0xFF; 105 } 106 return g; 107 } 108 109 /* 110 * N-dimensional permutation hash function 111 */ 112 private int h8 (int[] p, int sd) { 113 int h = sd & 0xFF; 114 for (int k = 0; k < p.length; k++) { 115 h = P[h + p[k] & 0xFF]; 116 } 117 return h; 118 } 119 120 /** 121 * Permutation table P[i], for i = 0..255. To avoid index wrapping, table's length is doubled to 512. 122 */ 123 static final int P[] = new int[512]; 124 static { 125 int[] perm = { 126 151, 160, 137, 91, 90, 15, 131, 13, 127 201, 95, 96, 53, 194, 233, 7, 225, 128 140, 36, 103, 30, 69, 142, 8, 99, 129 37, 240, 21, 10, 23, 190, 6, 148, 130 247, 120, 234, 75, 0, 26, 197, 62, 131 94, 252, 219, 203, 117, 35, 11, 32, 132 57, 177, 33, 88, 237, 149, 56, 87, 133 174, 20, 125, 136, 171, 168, 68, 175, 134 74, 165, 71, 134, 139, 48, 27, 166, 135 77, 146, 158, 231, 83, 111, 229, 122, 136 60, 211, 133, 230, 220, 105, 92, 41, 137 55, 46, 245, 40, 244, 102, 143, 54, 138 65, 25, 63, 161, 1, 216, 80, 73, 139 209, 76, 132, 187, 208, 89, 18, 169, 140 200, 196, 135, 130, 116, 188, 159, 86, 141 164, 100, 109, 198, 173, 186, 3, 64, 142 52, 217, 226, 250, 124, 123, 5, 202, 143 38, 147, 118, 126, 255, 82, 85, 212, 144 207, 206, 59, 227, 47, 16, 58, 17, 145 182, 189, 28, 42, 223, 183, 170, 213, 146 119, 248, 152, 2, 44, 154, 163, 70, 147 221, 153, 101, 155, 167, 43, 172, 9, 148 129, 22, 39, 253, 19, 98, 108, 110, 149 79, 113, 224, 232, 178, 185, 112, 104, 150 218, 246, 97, 228, 251, 34, 242, 193, 151 238, 210, 144, 12, 191, 179, 162, 241, 152 81, 51, 145, 235, 249, 14, 239, 107, 153 49, 192, 214, 31, 181, 199, 106, 157, 154 184, 84, 204, 176, 115, 121, 50, 45, 155 127, 4, 150, 254, 138, 236, 205, 93, 156 222, 114, 67, 29, 24, 72, 243, 141, 157 128, 195, 78, 66, 215, 61, 156, 180 }; 158 for (int i = 0; i < 256; i++) 159 P[256 + i] = P[i] = perm[i]; 160 } 161 162}