001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.noise.hashing; 011 012/** 013 * Hash functions for gradient (Perlin) noise. 014 * 015 * @author WB 016 * @version 2022/11/24 017 */ 018public abstract class Hash32 implements HashFunction { 019 020 private static final int maxInt = 0x7fffffff; 021 022 private static final int[] smallPrimes = { // used for N-dimensional hashing 023 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 024 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 025 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 026 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 027 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 028 353, 359, 367, 373, 379, 383, 389, 397, 401, 409 029 }; 030 031 final int seed; 032 033 protected Hash32(int seed) { 034 this.seed = HashFunction.getRandomSeed(seed); 035 } 036 037 /** 038 * "Hashes" an <tt>int</tt> key to a "pseudo-random" <tt>int</tt> value in [-2147483648, 2147483647]. This method is 039 * to be implemented by concrete subclasses. 040 * 041 * @param key key to be hashed 042 * @return a integer value in [-2147483648, 2147483647]. 043 */ 044 abstract int hashInt(int key); 045 046 @Override 047 public double hash(int u) { 048 int h = hashInt(73*u + seed) & maxInt; 049 return (double) h / maxInt; 050 } 051 052// public double[] hash(int u, int v) { 053// int hx = hashInt(59*u + 67*v + seed) & maxInt; 054// int hy = hashInt(73*u + 79*v + seed) & maxInt; 055// return new double[] {(double) hx / maxInt, (double) hy / maxInt}; 056// } 057 058 // call 1 hash function and extract 12-bit blocks 059 @Override 060 public double[] hash(int u, int v) { 061 final int M = 0x00000FFF; 062 int h = hashInt(59*u + 67*v + seed); 063 int hx = h & M; // extract bits 0..11 064 int hy = (h >> 12) & M; // extract bits 12..23 065 return new double[] {(double) hx / M, (double) hy / M}; 066 } 067 068 // call 3 different hash functions for 3 dimensions 069// public double[] hash(int u, int v, int w) { 070// int M = 0x7FFFFFFF; 071// int hx = hashInt(59*u + 67*v + 71*w + seed) & M; 072// int hy = hashInt(73*u + 79*v + 83*w + seed) & M; 073// int hz = hashInt(89*u + 97*v + 101*w + seed) & M; 074// return new double[] {(double) hx/M, (double) hy/M, (double) hz/M}; 075// } 076 077 078 // call 1 hash function and extract bit blocks 079 @Override 080 public double[] hash(int u, int v, int w) { 081 final int M = 0x000000FF; 082 int h = hashInt(59*u + 67*v + 71*w + seed); 083 int hx = h & M; // extract bits 0..7 084 int hy = (h >> 8) & M; // extract bits 8..15 085 int hz = (h >> 16) & M; // extract bits 16..23 086 return new double[] {(double) hx / M, (double) hy / M, (double) hz / M}; 087 } 088 089 /** 090 * N-dimensional permutation hash; this version does not use any bit splitting. Instead, the hashInt() function is 091 * applied repeatedly for every gradient dimension by using the dimension number (k) as a local seed - in addition 092 * to the global seed (seed). 093 */ 094 @Override 095 public double[] hash(int[] p) { 096 final int N = p.length; 097 double[] g = new double[N]; 098 for (int k = 0; k < N; k++) { // dimension k 099 int sum = seed; 100 for (int l = 0; l < N; l++) { // dimension k 101 sum = sum + smallPrimes[l + k] * p[l]; 102 } 103 int h = hashInt(sum + k) & maxInt; 104 g[k] = (double) h / maxInt; 105 } 106 return g; 107 } 108 109}