001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.math.eigen.eispack;
010
011public abstract class QZHES {
012        
013        /*
014        EISPACK Routines, see http://www.netlib.org/eispack/ for the original FORTRAN code.
015        Untangled to goto-free Java by W. Burger using a sequential state machine concept, inspired by D. E. Knuth,
016        "Structured Programming with Goto Statements", Computing Surveys, Vol. 6, No. 4 (1974).
017         */
018
019        private QZHES() {}
020
021        /**
022         * <p>
023         * This subroutine is the first step of the qz algorithm for solving generalized matrix eigenvalue problems, SIAM J.
024         * Numer. Anal. 10, 241-256 (1973) by Moler and Stewart. This description has been adapted from the original version
025         * (dated August 1983).
026         * </p>
027         * <p>
028         * This subroutine accepts a pair of real general matrices and reduces one of them to upper Hessenberg form and the
029         * other to upper triangular form using orthogonal transformations. It is usually followed by qzit, qzval and,
030         * possibly, qzvec.
031         * </p>
032         * <p>
033         * On output:
034         * </p>
035         * <ul>
036         * <li><strong>a</strong> has been reduced to upper hessenberg form. The elements below the first subdiagonal have
037         * been set to zero.</li>
038         * <li><strong>b</strong> has been reduced to upper triangular form. The elements below the main diagonal have been
039         * set to zero.</li>
040         * <li><strong>z</strong> contains the product of the right hand transformations if matz has been set to true.
041         * Otherwise, <strong>z</strong> is not referenced.</li>
042         * </ul>
043         *
044         * @param a contains a real general matrix.
045         * @param b contains a real general matrix.
046         * @param matz should be set to true if the right hand transformations are to be accumulated for later use in
047         * computing eigenvectors, and to false otherwise.
048         * @param z on output, contains the product of the right hand transformations if matz has been set to true.
049         * Otherwise, z is not referenced.
050         */
051        public static void qzhes(double[][] a, double[][] b, boolean matz, double[][] z) {
052                
053                final int n = a.length;
054                
055                int i, j, k, l, nm1, nm2;
056                double r, s, t;
057                int l1;
058                double u1, u2, v1, v2;
059                int lb, nk1;
060                double rho;
061        
062                // initialize z (with identity matrix)
063                if (matz) {
064                        for (j = 0; j < n; j++) {
065                                for (i = 0; i < n; i++) {
066                                        z[i][j] = 0.0;
067                                }       //      L2
068                                z[j][j] = 1.0;
069                        }       // L3
070                }
071        
072                // L10: reduce b to upper triangular form
073                if (n <= 1) {
074                        return;
075                }
076                
077                nm1 = n - 1;    // TODO: check!!
078                
079                for (l = 0; l < nm1; l++) {
080                        l1 = l + 1;
081                        s = 0.0;
082        
083                        for (i = l1; i < n; i++) {
084                                s = s + Math.abs(b[i][l]);
085                        }       // L20
086        
087                        if (s != 0.0) {         
088                                s = s + Math.abs(b[l][l]);
089                                r = 0.0;
090                                for (i = l; i < n; i++) {
091                                        b[i][l] = b[i][l] / s;
092                                        r = r + b[i][l] * b[i][l];
093                                }       // L25
094                
095                                r = Math.copySign(Math.sqrt(r), b[l][l]);
096                                b[l][l] = b[l][l] + r;
097                                rho = r * b[l][l];
098                
099                                for (j = l1; j < n; j++) {
100                                        t = 0.0;        // dot product
101                                        for (i = l; i < n; i++) {
102                                                t = t + b[i][l] * b[i][j];
103                                        }       //L30
104                                        t = -t / rho;
105                                        
106                                        for (i = l; i < n; i++) {
107                                                b[i][j] = b[i][j] + t * b[i][l];
108                                        }       // L40
109                                        
110                                }       // L50
111                
112                                for (j = 0; j < n; j++) {
113                                        t = 0.0;        // dot product
114                                        for (i = l; i < n; i++) {
115                                                t = t + b[i][l] * a[i][j];
116                                        }       // L60
117                                        
118                                        t = -t / rho;
119                                        
120                                        for (i = l; i < n; i++) {
121                                                a[i][j] = a[i][j] + t * b[i][l];
122                                        }       // L70
123                                        
124                                }       // L80
125                
126                                b[l][l] = -s * r;
127                                for (i = l1; i < n; i++) {
128                                        b[i][l] = 0.0;
129                                }       // L90
130                        
131                        }       // end if               
132                }       // L100
133        
134                // reduce a to upper Hessenberg form, while keeping b triangular
135                if (n == 2) {
136                        return;
137                }
138                nm2 = n - 2;
139                
140                for (k = 0; k < nm2; k++) {
141                        nk1 = nm1 - k - 1; // = n - 2 - k;
142        
143                        // for l=n-1 step -1 until k+1 do
144                        for (lb = 0; lb < nk1; lb++) {
145                                l = n - lb - 2;                                 // TODO: check!!
146                                l1 = l + 1;
147        
148                                // zero a(l+1,k)
149                                s = Math.abs(a[l][k]) + Math.abs(a[l1][k]);
150                                if (s == 0.0) {
151                                        continue;       // goto 150
152                                }
153                                u1 = a[l][k] / s;
154                                u2 = a[l1][k] / s;
155                                r = Math.copySign(Math.hypot(u1, u2), u1); 
156                                v1 = -(u1 + r) / r;
157                                v2 = -u2 / r;
158                                u2 = v2 / v1;
159        
160                                for (j = k; j < n; j++) {
161                                        t = a[l][j] + u2 * a[l1][j];
162                                        a[l][j] = a[l][j] + t * v1;
163                                        a[l1][j] = a[l1][j] + t * v2;
164                                }       // L110
165        
166                                a[l1][k] = 0.0;
167        
168                                for (j = l; j < n; j++) {
169                                        t = b[l][j] + u2 * b[l1][j];
170                                        b[l][j] = b[l][j] + t * v1;
171                                        b[l1][j] = b[l1][j] + t * v2;
172                                }       // L120
173        
174                                // zero b(l+1,l)
175                                s = Math.abs(b[l1][l1]) + Math.abs(b[l1][l]);
176                                if (s == 0.0) {
177                                        continue;       // go to 150
178                                }
179                                u1 = b[l1][l1] / s;
180                                u2 = b[l1][l] / s;
181                                r = Math.copySign(Math.hypot(u1, u2), u1);
182                                v1 = -(u1 + r) / r;
183                                v2 = -u2 / r;
184                                u2 = v2 / v1;
185        
186                                for (i = 0; i <= l1; i++) {
187                                        t = b[i][l1] + u2 * b[i][l];
188                                        b[i][l1] = b[i][l1] + t * v1;
189                                        b[i][l] = b[i][l] + t * v2;
190                                }       // L130
191        
192                                b[l1][l] = 0.0;
193        
194                                for (i = 0; i < n; i++) {
195                                        t = a[i][l1] + u2 * a[i][l];
196                                        a[i][l1] = a[i][l1] + t * v1;
197                                        a[i][l] = a[i][l] + t * v2;
198                                }       // L140
199        
200                                if (matz) {
201                                        for (i = 0; i < n; i++) {
202                                                t = z[i][l1] + u2 * z[i][l];
203                                                z[i][l1] = z[i][l1] + t * v1;
204                                                z[i][l] = z[i][l] + t * v2;
205                                        }       // L145
206                                }
207                        }       // L150
208                }       // L160
209        
210        } // end of qzhes
211
212}