001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.math.eigen; 010 011import org.apache.commons.math3.linear.CholeskyDecomposition; 012import org.apache.commons.math3.linear.DecompositionSolver; 013import org.apache.commons.math3.linear.EigenDecomposition; 014import org.apache.commons.math3.linear.LUDecomposition; 015import org.apache.commons.math3.linear.MatrixUtils; 016import org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException; 017import org.apache.commons.math3.linear.RealMatrix; 018import org.apache.commons.math3.linear.RealVector; 019 020import static org.apache.commons.math3.linear.CholeskyDecomposition.DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD; 021import static org.apache.commons.math3.linear.CholeskyDecomposition.DEFAULT_RELATIVE_SYMMETRY_THRESHOLD; 022 023/** 024 * <p> 025 * Solves the generalized symmetric eigenproblem of the form A x = λ B x, where matrices A, B are symmetric and B 026 * is positive definite (see Sec. 11.0.5. of [1]). See Appendix Sec. B.5.2 of [2] for more details. The methods defined 027 * by this class are analogous to the conventional eigendecomposition (see {@link EigenDecomposition}). 028 * </p> 029 * <p> 030 * [1] Press, Teukolsky, Vetterling, Flannery: "Numerical Recipes". Cambridge University Press, 3rd ed. (2007). <br> [2] 031 * W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 032 * (2022). 033 * </p> 034 * 035 * @author WB 036 * @version 2022/06/11 037 * @see GeneralizedEigenDecomposition 038 * @see EigenDecompositionJama 039 */ 040public class GeneralizedSymmetricEigenDecomposition implements RealEigenDecomposition { 041 042 private final EigenDecomposition eigendecompY; 043 private final DecompositionSolver solverLT; 044 045 /** 046 * Constructor, using specific parameters. Solves the generalized symmetric eigenproblem of the form A x = λ 047 * B x, where matrices A, B are symmetric and B is positive definite. An exception is thrown if A is not symmetric 048 * and the Cholesky decomposition throws an exception if B is either not symmetric, not positive definite or 049 * singular. 050 * 051 * @param A real symmetric matrix 052 * @param B real symmetric and positive definite matrix 053 * @param rsth relative symmetry threshold 054 * @param apth absolute positivity threshold 055 */ 056 public GeneralizedSymmetricEigenDecomposition(RealMatrix A, RealMatrix B, double rsth, double apth) { 057 if (!MatrixUtils.isSymmetric(A, rsth)) { 058 throw new IllegalArgumentException("matrix A must be symmetric"); 059 } 060 061 if (!MatrixUtils.isSymmetric(B, rsth)) { 062 throw new IllegalArgumentException("matrix B must be symmetric"); 063 } 064 065 CholeskyDecomposition cd = null; 066 try { 067 cd = new CholeskyDecomposition(B, rsth, apth); 068 } catch (NonPositiveDefiniteMatrixException e) { 069 throw new IllegalArgumentException("matrix B must be positive definite"); 070 } 071 072 RealMatrix L = cd.getL(); 073 074 // find Q, such that Q * LT = A or equivalently L * QT = AT = A (since A is symmetric) 075 DecompositionSolver sL = new LUDecomposition(L).getSolver(); 076 RealMatrix Q = sL.solve(A); 077 078 // find Y, such that L * Y = QT 079 RealMatrix Y = sL.solve(Q.transpose()); 080 081 // Y has the same eigenvalues as the original system and eigenvectors v_k 082 this.eigendecompY = new EigenDecomposition(Y); // use EigenDecompositionJama instead? 083 084 // the eigenvectors x_k of the original system are related 085 // to the eigenvectors v_k of Y as x_k = (LT)^(-1) * v_k = (L^(-1))^T * v_k 086 // or found by solving L^T * x_k = y_k, using the following solver: 087 this.solverLT = new LUDecomposition(cd.getLT()).getSolver(); 088 } 089 090 /** 091 * Constructor, using default parameters. Solves the generalized symmetric eigenproblem of the form A x = λ B 092 * x, where matrices A, B * are symmetric and B is positive definite 093 * 094 * @param A real symmetric matrix 095 * @param B real symmetric and positive definite matrix 096 */ 097 public GeneralizedSymmetricEigenDecomposition(RealMatrix A, RealMatrix B) { 098 this(A, B, 099 DEFAULT_RELATIVE_SYMMETRY_THRESHOLD, 100 DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD); 101 } 102 103 // --------------------------------------------------------------------- 104 105 @Override 106 public double[] getRealEigenvalues() { 107 return eigendecompY.getRealEigenvalues(); 108 } 109 110 @Override 111 public double getRealEigenvalue(int k) { 112 return eigendecompY.getRealEigenvalue(k); 113 } 114 115 public double[] getImagEigenvalues() { 116 return eigendecompY.getImagEigenvalues(); 117 } 118 119 @Override 120 public boolean hasComplexEigenvalues() { 121 return eigendecompY.hasComplexEigenvalues(); 122 } 123 124 @Override 125 public RealMatrix getD() { 126 return eigendecompY.getD(); 127 } 128 129 @Override 130 public RealVector getEigenvector(int k) { 131// return LiT.operate(ed.getEigenvector(k)); 132 // solve LT * x_k = v_k 133 RealVector vk = eigendecompY.getEigenvector(k); 134 return solverLT.solve(vk); 135 } 136 137 @Override 138 public RealMatrix getV() { 139// return LiT.multiply(ed.getV()); 140 // solve LT * X = V 141 return solverLT.solve(eigendecompY.getV()); 142 } 143 144} 145