001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.math.eigen;
010
011import imagingbook.common.math.Matrix;
012import org.apache.commons.math3.linear.MatrixUtils;
013import org.apache.commons.math3.linear.RealMatrix;
014import org.apache.commons.math3.linear.RealVector;
015
016import static imagingbook.common.math.Matrix.isSquare;
017import static imagingbook.common.math.Matrix.sameSize;
018import static imagingbook.common.math.eigen.eispack.QZHES.qzhes;
019import static imagingbook.common.math.eigen.eispack.QZIT.qzit;
020import static imagingbook.common.math.eigen.eispack.QZVAL.qzval;
021import static imagingbook.common.math.eigen.eispack.QZVEC.qzvec;
022
023/**
024 * <p>
025 * Solves the generalized eigenproblem of the form A x = &lambda; B x, for square matrices A, B.
026 * </p>
027 * <p>
028 * This implementation was ported from original EISPACK code [1] using a finite state machine concept [2] to untangle
029 * Fortran's GOTO statements (which are not available in Java), with some inspirations from this <a href=
030 * "https://github.com/accord-net/framework/blob/development/Sources/Accord.Math/Decompositions/GeneralizedEigenvalueDecomposition.cs">
031 * C# implementation</a>. See
032 * <a href="https://mipav.cit.nih.gov/">mipav.cit.nih.gov</a> (file
033 * {@code gov.nih.mipav.model.structures.jama.GeneralizedEigenvalue.java}) for another Java implementation based on
034 * EISPACK.
035 * </p>
036 * <p>
037 * Note: Results have limited accuracy. For some reason the first eigenvalue/-vector (k=0) is reasonably accurate, but
038 * the remaining ones are not. If matrices A, B are symmetric and B is positive definite, better use
039 * {@link GeneralizedSymmetricEigenDecomposition} instead, which is more accurate.
040 * </p>
041 * <p>
042 * [1] http://www.netlib.no/netlib/eispack/ <br> [2] D. E. Knuth, "Structured Programming with Goto Statements",
043 * Computing Surveys, Vol. 6, No. 4 (1974).
044 *
045 * @author WB
046 * @version 2022/12/22
047 * @see GeneralizedSymmetricEigenDecomposition
048 */
049public class GeneralizedEigenDecomposition implements RealEigenDecomposition {
050        // TODO: Check complex-valued eigenvectors.
051
052        public static boolean VERBOSE = false;
053
054        private final int n;
055        private final double[] alphaR;
056        private final double[] alphaI;
057        private final double[] beta;
058        private final double[][] Z;
059
060        /**
061         * Constructor, solves the generalized eigenproblem A x = &lambda; B x, for square matrices A, B.
062         *
063         * @param A square matrix A
064         * @param B square matrix B
065         */
066        public GeneralizedEigenDecomposition(RealMatrix A, RealMatrix B) {
067                this(A.getData(), B.getData());
068        }
069
070        /**
071         * Constructor, solves the generalized eigenproblem A x = &lambda; B x, for square matrices A, B.
072         *
073         * @param A square matrix A
074         * @param B square matrix B
075         */
076        public GeneralizedEigenDecomposition(double[][] A, double[][] B) {
077                if (!isSquare(A) || !isSquare(B) || !sameSize(A, B)) {
078                        throw new IllegalArgumentException("matrices A, B must be square and of same size");
079                }
080                this.n = A.length;
081                this.alphaR = new double[n];
082                this.alphaI = new double[n];
083                this.beta = new double[n];
084                this.Z = new double[n][n];
085
086                // a, b are modified by EISPACK routines:
087                double[][] a = Matrix.duplicate(A);
088                double[][] b = Matrix.duplicate(B);
089                boolean matz = true;
090
091                qzhes(a, b, matz, Z);
092                int ierr = qzit(a, b, 0, matz, Z);
093                if (ierr >= 0) {
094                        throw new RuntimeException("limit of 30*n iterations exhausted for eigenvalue " + ierr);
095                }
096                qzval(a, b, alphaR, alphaI, beta, matz, Z);
097                qzvec(a, b, alphaR, alphaI, beta, Z);
098        }
099
100        /**
101         * Returns a vector with the real parts of the eigenvalues.
102         *
103         * @return the real parts of the eigenvalues
104         */
105        @Override
106        public double[] getRealEigenvalues() {
107                double[] eval = new double[n];
108                for (int i = 0; i < n; i++) {
109                        eval[i] = alphaR[i] / beta[i];
110                }
111                return eval;
112        }
113
114        @Override
115        public double getRealEigenvalue(int k) {
116                return alphaR[k] / beta[k];
117        }
118
119        /**
120         * Returns a vector with the imaginary parts of the eigenvalues.
121         *
122         * @return the imaginary parts of the eigenvalues
123         */
124        public double[] getImagEigenvalues() {
125                double[] eval = new double[n];
126                for (int i = 0; i < n; i++)
127                        eval[i] = alphaI[i] / beta[i];
128                return eval;
129        }
130
131        /**
132         * Return the matrix of eigenvectors, which are its column vectors.
133         *
134         * @return the matrix of eigenvectors
135         */
136        @Override
137        public RealMatrix getV() {      // TODO: not implemented/checked for complex eigenvalues yet!
138                return MatrixUtils.createRealMatrix(Z);
139        }
140
141        /**
142         * Returns the specified eigenvector.
143         *
144         * @param k index
145         * @return the kth eigenvector
146         */
147        @Override
148        public RealVector getEigenvector(int k) {       // TODO: not implemented for complex eigenvalues yet!
149                return MatrixUtils.createRealVector(Matrix.getColumn(Z, k));
150        }
151
152        /**
153         * Returns whether the calculated eigenvalues are complex or real. The method performs a zero check on each element
154         * of the {@link #getImagEigenvalues()} array and returns {@code true} if any element is not equal to zero.
155         *
156         * @return {@code true} if any of the eigenvalues is complex, {@code false} otherwise
157         */
158        @Override
159        public boolean hasComplexEigenvalues() {
160                for (int i = 0; i < n; i++) {
161                        if (alphaI[i] != 0.0) {
162                                return true;
163                        }
164                }
165                return false;
166        }
167
168        /**
169         * Returns the block diagonal eigenvalue matrix D.
170         *
171         * @return the block diagonal eigenvalue matrix
172         */
173        @Override
174        public RealMatrix getD() {      // TODO: check complex case!
175                double[][] x = new double[n][n];
176
177                for (int i = 0; i < n; i++) {
178                        for (int j = 0; j < n; j++)
179                                x[i][j] = 0.0;
180
181                        x[i][i] = alphaR[i] / beta[i];
182                        if (alphaI[i] > 0)
183                                x[i][i + 1] = alphaI[i] / beta[i];
184                        else if (alphaI[i] < 0)
185                                x[i][i - 1] = alphaI[i] / beta[i];
186                }
187
188                return MatrixUtils.createRealMatrix(x);
189        }
190
191        // ----------------------------------------------------------
192
193        /**
194         * This method checks if any of the generated betas is zero. It does not says that the problem is singular, but only
195         * that one of the matrices A, B is singular.
196         *
197         * @return true if A or B is singular
198         */
199        public boolean isSingular() {
200                for (int i = 0; i < n; i++) {
201                        if (beta[i] == 0)
202                                return true;
203                }
204                return false;
205        }
206
207        /**
208         * Returns true if the eigenvalue problem is degenerate (i.e., ill-posed).
209         *
210         * @return true if degenerate
211         */
212        public boolean IsDegenerate() {
213                for (int i = 0; i < n; i++) {
214                        if (beta[i] == 0 && alphaR[i] == 0)
215                                return true;
216                }
217                return false;
218        }
219
220}