001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.math.eigen;
011
012import imagingbook.common.math.Matrix;
013import org.apache.commons.math3.linear.MatrixUtils;
014import org.apache.commons.math3.linear.RealMatrix;
015import org.apache.commons.math3.linear.RealVector;
016
017import static imagingbook.common.math.Arithmetic.sqr;
018
019/**
020 * <p>
021 * Implements an efficient, closed form algorithm for calculating the real eigenvalues (&lambda;) and eigenvectors (x)
022 * of a 2x2 matrix of the form
023 * </p>
024 * <pre>
025 *   | a b |
026 *   | c d |
027 * </pre>
028 * <p>
029 * There are typically (but not always) two pairs of real-valued solutions &lang;&lambda;<sub>0</sub>,
030 * x<sub>0</sub>&rang;, &lang;&lambda;<sub>1</sub>, x<sub>1</sub>&rang; such that A&middot;x<sub>k</sub> =
031 * &lambda;<sub>k</sub>&middot;x<sub>k</sub>. The resulting eigensystems are ordered such that &lambda;<sub>0</sub> &ge;
032 * &lambda;<sub>1</sub>. Eigenvectors are not normalized, i.e., no unit vectors (any scalar multiple of an Eigenvector
033 * is an Eigenvector too). Non-real eigenvalues are not handled. Clients should call method
034 * {@link #hasComplexEigenvalues()} to check if the eigenvalue calculation was successful.
035 * </p>
036 * <p>
037 * This implementation is inspired by Ch. 5 ("Consider the Lowly 2x2 Matrix") of [1]. Note that Blinn uses the notation
038 * x&middot;A = &lambda;&middot;x for the matrix-vector product (as common in computer graphics), while this
039 * implementation uses A&middot;x = &lambda;&middot;x. Thus x is treated as a column vector and matrix A is transposed
040 * (elements b/c are exchanged). See Appendix Sec. B.5 of [2] for more details.
041 * </p>
042 * <p>
043 * This implementation is considerably faster (ca. factor 5) than the general solution (e.g.,
044 * {@link EigenDecompositionJama}) for 2x2 matrices.
045 * </p>
046 * <p>
047 * [1] Blinn, Jim: "Jim Blinn's Corner: Notation, Notation, Notation", Morgan Kaufmann (2002). <br> [2] W. Burger, M.J.
048 * Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer (2022).
049 * </p>
050 *
051 * @author WB
052 * @version 2022/02/18
053 * @see EigenDecompositionJama
054 * @see EigenDecompositionApache
055 */
056public class Eigensolver2x2 implements RealEigenDecomposition { // to check: http://www.akiti.ca/Eig2Solv.html
057        
058        private final boolean isReal;
059        private final double[] eVals = {Double.NaN, Double.NaN};
060        private final double[][] eVecs = new double[2][];
061        
062        /**
063         * Constructor, takes a 2x2 matrix.
064         * @param A a 2x2 matrix
065         */
066        public Eigensolver2x2(double[][] A) {
067                this(A[0][0], A[0][1], A[1][0], A[1][1]);
068                if (Matrix.getNumberOfRows(A) != 2 || Matrix.getNumberOfColumns(A) != 2) {
069                        throw new IllegalArgumentException("matrix not of size 2x2");
070                }
071        }
072        
073        /**
074         * Constructor, takes the individual elements of a 2x2 matrix A:
075         * <pre>
076         *   | a b |
077         *   | c d | </pre>
078         * @param a matrix element A[0,0]
079         * @param b matrix element A[0,1]
080         * @param c matrix element A[1,0]
081         * @param d matrix element A[1,1]
082         */
083        public Eigensolver2x2(double a, double b, double c, double d) {
084                isReal = solve(a, b, c, d);
085        }
086        
087        private boolean solve(final double a, final double b, final double c, final double d) {
088                final double R = (a + d) / 2;
089                final double S = (a - d) / 2;
090                final double rho = sqr(S) + b * c;
091                
092                if (rho < 0) {  
093                        return false;           // no real-valued eigenvalues
094                }
095                
096                final double T = Math.sqrt(rho);
097                final double lambda0 = R + T;   // eigenvalue 0
098                final double lambda1 = R - T;   // eigenvalue 1
099                final double[] x0, x1;                  // eigenvectors 0, 1
100                
101                if (a - d > 0) {
102//                      System.out.println("Case 1");
103                        x0 = new double[] {S + T, c};
104                        x1 = new double[] {b, -(S + T)};
105                }
106                else if (a - d < 0) {
107//                      System.out.println("Case 2");
108                        x0 = new double[] {b, -S + T};
109                        x1 = new double[] {S - T, c};
110                }
111                else {          // (A - D) == 0
112//                      System.out.println("Case 3");
113                        final double bA = Math.abs(b);
114                        final double cA = Math.abs(c);
115                        final double bcR = Math.sqrt(b * c);
116                        if (bA < cA) {                                                  // |b| < |c|
117//                              System.out.println("Case 3a");
118                                x0 = new double[] { bcR, c};
119                                x1 = new double[] {-bcR, c};
120                        }
121                        else if (bA > cA) {                                     // |b| > |c|
122//                              System.out.println("Case 3b");
123                                x0 = new double[] {b,  bcR};
124                                x1 = new double[] {b, -bcR};
125                        }
126                        else {  // |B| == |C| and B,C must have the same sign
127//                              System.out.println("Case 3c");
128                                if (cA > 0) {   // 
129                                        x0 = new double[] { c, c};
130                                        x1 = new double[] {-c, c};
131                                }
132                                else { // B = C = 0; any vector is an eigenvector (we don't return trivial zero vectors)
133                                        x0 = new double[] { 0, 1};      // pick 2 arbitrary, orthogonal vectors
134                                        x1 = new double[] { 1, 0};
135                                }
136                        }
137                }
138                
139                eVals[0] = lambda0;
140                eVals[1] = lambda1;
141                eVecs[0] = x0;
142                eVecs[1] = x1;
143                
144                // lambda0 >= lambda1, no need to sort by magnitude
145                
146//              if (Math.abs(lambda0) >= Math.abs(lambda1)) {   // order eigenvalues by magnitude
147//                      eVals[0] = lambda0;
148//                      eVals[1] = lambda1;
149//                      eVecs[0] = x0;
150//                      eVecs[1] = x1;
151//              }
152//              else {
153//                      eVals[0] = lambda1;
154//                      eVals[1] = lambda0;
155//                      eVecs[0] = x1;
156//                      eVecs[1] = x0;
157//              }
158                return true;    // real eigenvalues
159        }
160        
161        
162//      public boolean isReal() {
163//              return isReal;
164//      }
165        
166        @Override
167        public boolean hasComplexEigenvalues() {
168                return !isReal;
169        }
170        
171        @Override
172        public double[] getRealEigenvalues() {
173                return eVals;
174        }
175        
176        @Override
177        public double getRealEigenvalue(int k) {
178                return eVals[k];
179        }
180        
181        @Override
182        public RealMatrix getV() {
183                return MatrixUtils.createRealMatrix(Matrix.transpose(eVecs));
184        }
185        
186        @Override
187        public RealVector getEigenvector(int k) {
188                return MatrixUtils.createRealVector(eVecs[k]);
189        }
190        
191        @Override
192        public String toString() {
193                if (this.isReal) {
194                        return String.format("<%.4f, %.4f, %s, %s>", 
195                                eVals[0], eVals[1], Matrix.toString(eVecs[0]), Matrix.toString(eVecs[1]));
196                }
197                else {
198                        return "<not real>";
199                }
200        }
201
202                
203}