001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.math.eigen;
010
011import imagingbook.common.math.Matrix;
012import imagingbook.common.math.exception.MaxIterationsExceededException;
013import org.apache.commons.math3.complex.Complex;
014import org.apache.commons.math3.linear.MatrixUtils;
015import org.apache.commons.math3.linear.RealMatrix;
016import org.apache.commons.math3.linear.RealVector;
017
018/**
019 * Eigenvalues and eigenvectors of a real matrix. This code has been ported from
020 * https://math.nist.gov/javanumerics/jama/ (Version 1.0.3), with the public API (and some internals) adapted to Apache
021 * Commons Math. Most comments below were taken from the original sources.
022 * <p>
023 * This is intended as a temporary substitute for Apache Commons Math's implementation
024 * ({@link org.apache.commons.math3.linear.EigenDecomposition}, whose symmetry tolerance appears to be too low and thus
025 * returns complex eigenvalues for close-to-symmetric matrices although solutions with real eigenvalues exist.
026 * </p>
027 * <p>
028 * If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is
029 * orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix.
030 * </p>
031 * <p>
032 * If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and
033 * any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the
034 * eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned,
035 * or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().
036 * </p>
037 * <p>
038 * See Appendix Sec. B.5 of [1] for more details.
039 * </p>
040 * <p>
041 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
042 * (2022).
043 * </p>
044 *
045 * @author WB
046 * @version 2022/06/19
047 * @see EigenDecompositionApache
048 * @see Eigensolver2x2
049 */
050public class EigenDecompositionJama implements RealEigenDecomposition {
051        
052        public static final double DefaultSymmetryTolerance = 1e-12;
053        public static final double DefaultZeroTolerance = 1e-12;
054        public static final int SchurMaxIterations = 30;
055
056        private final int n;                    // row and column dimension (square matrix).
057        private final boolean issymmetric;      // symmetry flag.
058        private final double[] d;               // real parts of eigenvalues.
059        private final double[] e;               // imaginary parts of eigenvalues.
060        private final double[][] V;             // array for internal storage of eigenvectors.
061        
062        private double[][] H;                   // array for internal storage of nonsymmetric Hessenberg form.
063        private double[] ort;                   // working storage for nonsymmetric algorithm.
064        
065        private final double symmetryTol;
066        private final double zeroTol;
067
068        /**
069         * Constructor. Checks for symmetry, then constructs the eigenvalue decomposition.
070         *
071         * @param M matrix to be decomposed
072         * @param symmetryTol absolute threshold for determining matrix symmetry
073         * @param zeroTol absolute threshold for determining zero matrix entries
074         * @throws MaxIterationsExceededException if the maximum number of iterations is exceeded (see
075         * {@link #SchurMaxIterations})
076         */
077        public EigenDecompositionJama(RealMatrix M, double symmetryTol, double zeroTol)
078                        throws MaxIterationsExceededException {
079                
080                final double[][] A = M.getData();
081                this.symmetryTol = symmetryTol;
082                this.zeroTol = zeroTol;
083                this.n = M.getColumnDimension();
084                this.V = new double[n][n];
085                this.d = new double[n];
086                this.e = new double[n];
087                
088                this.issymmetric = Matrix.isSymmetric(M, this.symmetryTol);
089
090//              issymmetric = true;
091//              for (int j = 0; (j < n) & issymmetric; j++) {
092//                      for (int i = 0; (i < n) & issymmetric; i++) {
093//                              issymmetric = (A[i][j] == A[j][i]);
094//                      }
095//              }
096
097                if (issymmetric) {
098                        for (int i = 0; i < n; i++) {
099                                for (int j = 0; j < n; j++) {
100                                        V[i][j] = A[i][j];
101                                }
102                        }
103                        tred2();        // Tridiagonalize.
104                        tql2();         // Diagonalize.
105
106                } else {
107                        this.H = new double[n][n];
108                        this.ort = new double[n];
109                        for (int j = 0; j < n; j++) {
110                                for (int i = 0; i < n; i++) {
111                                        H[i][j] = A[i][j];
112                                }
113                        }
114                        orthes();       // Reduce to Hessenberg form.
115                        hqr2();         // Reduce Hessenberg to real Schur form.
116                }
117        }
118
119        /**
120         * Constructor using default tolerance setting. See also {@link #DefaultSymmetryTolerance},
121         * {@link #DefaultZeroTolerance}.
122         *
123         * @param M matrix to be decomposed
124         */
125        public EigenDecompositionJama(RealMatrix M) {
126                this(M, DefaultSymmetryTolerance, DefaultZeroTolerance);
127        }
128        
129        // ------------------------ Public Methods ------------------------
130
131        /**
132         * Returns true if the decomposed matrix is considered symmetric. See also
133         * {@link #EigenDecompositionJama(RealMatrix, double, double)}, {@link #DefaultSymmetryTolerance}.
134         *
135         * @return true if symmetric, false otherwise
136         */
137        public boolean isSymmetric() {
138                return this.issymmetric;
139        }
140
141        /**
142         * Return the matrix of eigenvectors, which are its column vectors.
143         *
144         * @return the matrix of eigenvectors
145         */
146        @Override
147        public RealMatrix getV() {
148                return MatrixUtils.createRealMatrix(V);
149        }
150
151        /**
152         * Return the transpose of the eigenvector matrix. The eigenvectors are the rows of the returned matrix.
153         *
154         * @return the transposed matrix of eigenvectors
155         */
156        public RealMatrix getVT() {
157                return MatrixUtils.createRealMatrix(V).transpose();
158        }
159
160        /**
161         * Returns a copy of the specified eigenvector, i.e., the associated column vector of the matrix returned by
162         * {@link #getV()}.
163         *
164         * @param k index of the eigenvector (counting from 0).
165         * @return a copy of the k-th eigenvector
166         */
167        @Override
168    public RealVector getEigenvector(int k) {
169        double[] ev = new double[n];
170        for (int i = 0; i < n; i++) {
171                ev[i] = V[i][k];
172        }
173        return MatrixUtils.createRealVector(ev);
174    }
175
176        /**
177         * Return the real parts of the eigenvalues
178         * @return real(diag(D))
179         */
180        @Override
181        public double[] getRealEigenvalues() {
182                return d;
183        }
184
185        /**
186         * Return the imaginary parts of the eigenvalues
187         * @return imag(diag(D))
188         */
189        public double[] getImagEigenvalues() {
190                return e;
191        }
192        
193        @Override
194        public double getRealEigenvalue(int k) {
195                return d[k];
196        }
197        
198        public double getImagEigenvalue(int k) {
199                return e[k];
200        }
201
202        /**
203         * Returns whether the calculated eigenvalues are complex or real. The method performs a zero check on each element
204         * of the {@link #getImagEigenvalues()} array and returns {@code true} if any element is not equal to zero.
205         *
206         * @return {@code true} if any of the eigenvalues is complex, {@code false} otherwise
207         */
208        @Override
209    public boolean hasComplexEigenvalues() {
210        for (int i = 0; i < e.length; i++) {
211            if (Math.abs(e[i]) > zeroTol) {
212                return true;
213            }
214        }
215        return false;
216    }
217        
218//      /**
219//       * Return the block diagonal eigenvalue matrix
220//       * @return D
221//       */
222//      public RealMatrix getD() {
223//              final double[][] D = new double[n][n];
224//              for (int i = 0; i < n; i++) {
225//                      for (int j = 0; j < n; j++) {
226//                              D[i][j] = 0.0;
227//                      }
228//                      D[i][i] = d[i];
229//                      if (e[i] > 0) {
230//                              D[i][i + 1] = e[i];
231//                      } else if (e[i] < 0) {
232//                              D[i][i - 1] = e[i];
233//                      }
234//              }
235//              return MatrixUtils.createRealMatrix(D);
236//      }
237
238        /**
239         * Gets the block diagonal matrix D of the decomposition. D is a block diagonal matrix. Real eigenvalues are on the
240         * diagonal while complex values are on 2x2 blocks {{real pos imaginary}, {neg imaginary, real}}. WB: Wonder if
241         * indexes are safe!
242         *
243         * @return D
244         */
245        @Override
246        public RealMatrix getD() {
247                RealMatrix D = MatrixUtils.createRealDiagonalMatrix(d);
248                for (int i = 0; i < e.length; i++) {
249                        if (e[i] > zeroTol) {
250                                D.setEntry(i, i + 1, e[i]);
251                        } else if (e[i] < -zeroTol) {
252                                D.setEntry(i, i - 1, e[i]);
253                        }
254                }
255                return D;
256        }
257        
258        /**
259     * Calculates and returns the determinant of the decomposed matrix.
260     *
261     * @return the determinant of the matrix.
262     */
263    public double getDeterminant() {
264        double determinant = 1.0;
265        for (double lambda : d) {
266            determinant = determinant * lambda;
267        }
268        return determinant;
269    }
270
271        // ------------------------ Private Methods ------------------------
272
273        // Symmetric Householder reduction to tridiagonal form.
274        private void tred2() {
275                // This is derived from the Algol procedures tred2 by
276                // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
277                // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
278                // Fortran subroutine in EISPACK.
279                for (int j = 0; j < n; j++) {
280                        d[j] = V[n - 1][j];
281                }
282
283                // Householder reduction to tridiagonal form.
284                for (int i = n - 1; i > 0; i--) {
285                        // Scale to avoid under/overflow.
286                        double scale = 0.0;
287                        double h = 0.0;
288                        for (int k = 0; k < i; k++) {
289                                scale = scale + Math.abs(d[k]);
290                        }
291                        if (scale == 0.0) {
292                                e[i] = d[i - 1];
293                                for (int j = 0; j < i; j++) {
294                                        d[j] = V[i - 1][j];
295                                        V[i][j] = 0.0;
296                                        V[j][i] = 0.0;
297                                }
298                        } else {
299                                // Generate Householder vector.
300                                for (int k = 0; k < i; k++) {
301                                        d[k] /= scale;
302                                        h += d[k] * d[k];
303                                }
304                                double f = d[i - 1];
305                                double g = Math.sqrt(h);
306                                if (f > 0) {
307                                        g = -g;
308                                }
309                                e[i] = scale * g;
310                                h = h - f * g;
311                                d[i - 1] = f - g;
312                                for (int j = 0; j < i; j++) {
313                                        e[j] = 0.0;
314                                }
315
316                                // Apply similarity transformation to remaining columns.
317                                for (int j = 0; j < i; j++) {
318                                        f = d[j];
319                                        V[j][i] = f;
320                                        g = e[j] + V[j][j] * f;
321                                        for (int k = j + 1; k <= i - 1; k++) {
322                                                g += V[k][j] * d[k];
323                                                e[k] += V[k][j] * f;
324                                        }
325                                        e[j] = g;
326                                }
327                                f = 0.0;
328                                for (int j = 0; j < i; j++) {
329                                        e[j] /= h;
330                                        f += e[j] * d[j];
331                                }
332                                final double hh = f / (h + h);
333                                for (int j = 0; j < i; j++) {
334                                        e[j] -= hh * d[j];
335                                }
336                                for (int j = 0; j < i; j++) {
337                                        f = d[j];
338                                        g = e[j];
339                                        for (int k = j; k <= i - 1; k++) {
340                                                V[k][j] -= (f * e[k] + g * d[k]);
341                                        }
342                                        d[j] = V[i - 1][j];
343                                        V[i][j] = 0.0;
344                                }
345                        }
346                        d[i] = h;
347                }
348
349                // Accumulate transformations.
350                for (int i = 0; i < n - 1; i++) {
351                        V[n - 1][i] = V[i][i];
352                        V[i][i] = 1.0;
353                        final double h = d[i + 1];
354                        if (h != 0.0) {
355                                for (int k = 0; k <= i; k++) {
356                                        d[k] = V[k][i + 1] / h;
357                                }
358                                for (int j = 0; j <= i; j++) {
359                                        double g = 0.0;
360                                        for (int k = 0; k <= i; k++) {
361                                                g += V[k][i + 1] * V[k][j];
362                                        }
363                                        for (int k = 0; k <= i; k++) {
364                                                V[k][j] -= g * d[k];
365                                        }
366                                }
367                        }
368                        for (int k = 0; k <= i; k++) {
369                                V[k][i + 1] = 0.0;
370                        }
371                }
372                for (int j = 0; j < n; j++) {
373                        d[j] = V[n - 1][j];
374                        V[n - 1][j] = 0.0;
375                }
376                V[n - 1][n - 1] = 1.0;
377                e[0] = 0.0;
378        }
379
380        // Symmetric tridiagonal QL algorithm.
381        private void tql2() {
382                // This is derived from the Algol procedures tql2, by
383                // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
384                // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
385                // Fortran subroutine in EISPACK.
386                for (int i = 1; i < n; i++) {
387                        e[i - 1] = e[i];
388                }
389                e[n - 1] = 0.0;
390
391                double f = 0.0;
392                double tst1 = 0.0;
393                final double eps = Math.pow(2.0, -52.0);
394                for (int l = 0; l < n; l++) {
395                        // Find small subdiagonal element
396                        tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l]));
397                        int m = l;
398                        while (m < n) {
399                                if (Math.abs(e[m]) <= eps * tst1) {
400                                        break;
401                                }
402                                m++;
403                        }
404
405                        // If m == l, d[l] is an eigenvalue,
406                        // otherwise, iterate.
407                        if (m > l) {
408                                int iter = 0;
409                                do {
410                                        iter = iter + 1; // (Could check iteration count here.)
411                                        // Compute implicit shift
412                                        double g = d[l];
413                                        double p = (d[l + 1] - g) / (2.0 * e[l]);
414                                        double r = Math.hypot(p, 1.0);
415                                        if (p < 0) {
416                                                r = -r;
417                                        }
418                                        d[l] = e[l] / (p + r);
419                                        d[l + 1] = e[l] * (p + r);
420                                        final double dl1 = d[l + 1];
421                                        double h = g - d[l];
422                                        for (int i = l + 2; i < n; i++) {
423                                                d[i] -= h;
424                                        }
425                                        f = f + h;
426
427                                        // Implicit QL transformation.
428                                        p = d[m];
429                                        double c = 1.0;
430                                        double c2 = c;
431                                        double c3 = c;
432                                        final double el1 = e[l + 1];
433                                        double s = 0.0;
434                                        double s2 = 0.0;
435                                        for (int i = m - 1; i >= l; i--) {
436                                                c3 = c2;
437                                                c2 = c;
438                                                s2 = s;
439                                                g = c * e[i];
440                                                h = c * p;
441                                                r = Math.hypot(p, e[i]);
442                                                e[i + 1] = s * r;
443                                                s = e[i] / r;
444                                                c = p / r;
445                                                p = c * d[i] - s * g;
446                                                d[i + 1] = h + s * (c * g + s * d[i]);
447
448                                                // Accumulate transformation.
449                                                for (int k = 0; k < n; k++) {
450                                                        h = V[k][i + 1];
451                                                        V[k][i + 1] = s * V[k][i] + c * h;
452                                                        V[k][i] = c * V[k][i] - s * h;
453                                                }
454                                        }
455                                        p = -s * s2 * c3 * el1 * e[l] / dl1;
456                                        e[l] = s * p;
457                                        d[l] = c * p;
458
459                                        // Check for convergence.
460                                } while (Math.abs(e[l]) > eps * tst1);
461                        }
462                        d[l] = d[l] + f;
463                        e[l] = 0.0;
464                }
465
466                // Sort eigenvalues and corresponding vectors.
467                for (int i = 0; i < n - 1; i++) {
468                        int k = i;
469                        double p = d[i];
470                        for (int j = i + 1; j < n; j++) {
471                                if (d[j] < p) {
472                                        k = j;
473                                        p = d[j];
474                                }
475                        }
476                        if (k != i) {
477                                d[k] = d[i];
478                                d[i] = p;
479                                for (int j = 0; j < n; j++) {
480                                        p = V[j][i];
481                                        V[j][i] = V[j][k];
482                                        V[j][k] = p;
483                                }
484                        }
485                }
486        }
487
488        // Nonsymmetric reduction to Hessenberg form.
489        private void orthes() {
490                // This is derived from the Algol procedures orthes and ortran,
491                // by Martin and Wilkinson, Handbook for Auto. Comp.,
492                // Vol.ii-Linear Algebra, and the corresponding
493                // Fortran subroutines in EISPACK.
494                final int low = 0;
495                final int high = n - 1;
496                
497                for (int m = low + 1; m <= high - 1; m++) {
498
499                        // Scale column.
500
501                        double scale = 0.0;
502                        for (int i = m; i <= high; i++) {
503                                scale = scale + Math.abs(H[i][m - 1]);
504                        }
505                        if (scale != 0.0) {
506                                // Compute Householder transformation.
507                                double h = 0.0;
508                                for (int i = high; i >= m; i--) {
509                                        ort[i] = H[i][m - 1] / scale;
510                                        h += ort[i] * ort[i];
511                                }
512                                double g = Math.sqrt(h);
513                                if (ort[m] > 0) {
514                                        g = -g;
515                                }
516                                h = h - ort[m] * g;
517                                ort[m] = ort[m] - g;
518
519                                // Apply Householder similarity transformation
520                                // H = (I-u*u'/h)*H*(I-u*u')/h)
521                                for (int j = m; j < n; j++) {
522                                        double f = 0.0;
523                                        for (int i = high; i >= m; i--) {
524                                                f += ort[i] * H[i][j];
525                                        }
526                                        f = f / h;
527                                        for (int i = m; i <= high; i++) {
528                                                H[i][j] -= f * ort[i];
529                                        }
530                                }
531
532                                for (int i = 0; i <= high; i++) {
533                                        double f = 0.0;
534                                        for (int j = high; j >= m; j--) {
535                                                f += ort[j] * H[i][j];
536                                        }
537                                        f = f / h;
538                                        for (int j = m; j <= high; j++) {
539                                                H[i][j] -= f * ort[j];
540                                        }
541                                }
542                                ort[m] = scale * ort[m];
543                                H[m][m - 1] = scale * g;
544                        }
545                }
546
547                // Accumulate transformations (Algol's ortran).
548                for (int i = 0; i < n; i++) {
549                        for (int j = 0; j < n; j++) {
550                                V[i][j] = (i == j ? 1.0 : 0.0);
551                        }
552                }
553
554                for (int m = high - 1; m >= low + 1; m--) {
555                        if (H[m][m - 1] != 0.0) {
556                                for (int i = m + 1; i <= high; i++) {
557                                        ort[i] = H[i][m - 1];
558                                }
559                                for (int j = m; j <= high; j++) {
560                                        double g = 0.0;
561                                        for (int i = m; i <= high; i++) {
562                                                g += ort[i] * V[i][j];
563                                        }
564                                        // Double division avoids possible underflow
565                                        g = (g / ort[m]) / H[m][m - 1];
566                                        for (int i = m; i <= high; i++) {
567                                                V[i][j] += g * ort[i];
568                                        }
569                                }
570                        }
571                }
572        }
573
574//      // Complex scalar division (old)
575//      private transient double cdivr, cdivi;
576//
577//      @Deprecated
578//      private void cdivOld(final double xr, final double xi, final double yr, final double yi) {
579//              double r, d;
580//              if (Math.abs(yr) > Math.abs(yi)) {
581//                      r = yi / yr;
582//                      d = yr + r * yi;
583//                      cdivr = (xr + r * xi) / d;
584//                      cdivi = (xi - r * xr) / d;
585//              } else {
586//                      r = yr / yi;
587//                      d = yi + r * yr;
588//                      cdivr = (r * xr + xi) / d;
589//                      cdivi = (r * xi - xr) / d;
590//              }
591//      }
592        
593    /**
594     * Performs a division of two complex numbers.
595     *
596     * @param xr real part of the first number
597     * @param xi imaginary part of the first number
598     * @param yr real part of the second number
599     * @param yi imaginary part of the second number
600     * @return result of the complex division
601     */
602    private Complex cdiv(final double xr, final double xi,
603                         final double yr, final double yi) {
604        return new Complex(xr, xi).divide(new Complex(yr, yi));
605    }
606
607        // Nonsymmetric reduction from Hessenberg to real Schur form.
608        private void hqr2() {
609                // This is derived from the Algol procedure hqr2,
610                // by Martin and Wilkinson, Handbook for Auto. Comp.,
611                // Vol.ii-Linear Algebra, and the corresponding
612                // Fortran subroutine in EISPACK.
613                
614                // Initialize
615                final int nn = this.n;
616                int n = nn - 1;
617                final int low = 0;
618                final int high = nn - 1;
619                final double eps = Math.pow(2.0, -52.0);
620                double exshift = 0.0;
621                double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y;
622
623                // Store roots isolated by balanc and compute matrix norm
624                double norm = 0.0;
625                for (int i = 0; i < nn; i++) {
626                        if (i < low | i > high) {
627                                d[i] = H[i][i];
628                                e[i] = 0.0;
629                        }
630                        for (int j = Math.max(i - 1, 0); j < nn; j++) {
631                                norm = norm + Math.abs(H[i][j]);
632                        }
633                }
634
635                // Outer loop over eigenvalue index
636                int iter = 0;
637                while (n >= low) {
638                        // Look for single small sub-diagonal element
639                        int l = n;
640                        while (l > low) {
641                                s = Math.abs(H[l - 1][l - 1]) + Math.abs(H[l][l]);
642                                if (s == 0.0) {
643                                        s = norm;
644                                }
645                                if (Math.abs(H[l][l - 1]) < eps * s) {
646                                        break;
647                                }
648                                l--;
649                        }
650
651                        // Check for convergence
652                        // One root found
653                        if (l == n) {
654                                H[n][n] = H[n][n] + exshift;
655                                d[n] = H[n][n];
656                                e[n] = 0.0;
657                                n--;
658                                iter = 0;
659                                // Two roots found
660                        } else if (l == n - 1) {
661                                w = H[n][n - 1] * H[n - 1][n];
662                                p = (H[n - 1][n - 1] - H[n][n]) / 2.0;
663                                q = p * p + w;
664                                z = Math.sqrt(Math.abs(q));
665                                H[n][n] = H[n][n] + exshift;
666                                H[n - 1][n - 1] = H[n - 1][n - 1] + exshift;
667                                x = H[n][n];
668
669                                // Real pair
670                                if (q >= 0) {
671                                        if (p >= 0) {
672                                                z = p + z;
673                                        } else {
674                                                z = p - z;
675                                        }
676                                        d[n - 1] = x + z;
677                                        d[n] = d[n - 1];
678                                        if (z != 0.0) {
679                                                d[n] = x - w / z;
680                                        }
681                                        e[n - 1] = 0.0;
682                                        e[n] = 0.0;
683                                        x = H[n][n - 1];
684                                        s = Math.abs(x) + Math.abs(z);
685                                        p = x / s;
686                                        q = z / s;
687                                        r = Math.sqrt(p * p + q * q);
688                                        p = p / r;
689                                        q = q / r;
690
691                                        // Row modification
692                                        for (int j = n - 1; j < nn; j++) {
693                                                z = H[n - 1][j];
694                                                H[n - 1][j] = q * z + p * H[n][j];
695                                                H[n][j] = q * H[n][j] - p * z;
696                                        }
697
698                                        // Column modification
699                                        for (int i = 0; i <= n; i++) {
700                                                z = H[i][n - 1];
701                                                H[i][n - 1] = q * z + p * H[i][n];
702                                                H[i][n] = q * H[i][n] - p * z;
703                                        }
704
705                                        // Accumulate transformations
706                                        for (int i = low; i <= high; i++) {
707                                                z = V[i][n - 1];
708                                                V[i][n - 1] = q * z + p * V[i][n];
709                                                V[i][n] = q * V[i][n] - p * z;
710                                        }
711
712                                        // Complex pair
713                                } else {
714                                        d[n - 1] = x + p;
715                                        d[n] = x + p;
716                                        e[n - 1] = z;
717                                        e[n] = -z;
718                                }
719                                n = n - 2;
720                                iter = 0;
721                                // No convergence yet
722                        } else {
723                                // Form shift
724                                x = H[n][n];
725                                y = 0.0;
726                                w = 0.0;
727                                if (l < n) {
728                                        y = H[n - 1][n - 1];
729                                        w = H[n][n - 1] * H[n - 1][n];
730                                }
731
732                                // Wilkinson's original ad hoc shift
733                                if (iter == 10) {
734                                        exshift += x;
735                                        for (int i = low; i <= n; i++) {
736                                                H[i][i] -= x;
737                                        }
738                                        s = Math.abs(H[n][n - 1]) + Math.abs(H[n - 1][n - 2]);
739                                        x = y = 0.75 * s;
740                                        w = -0.4375 * s * s;
741                                }
742
743                                // MATLAB's new ad hoc shift
744                                if (iter == 30) {
745                                        s = (y - x) / 2.0;
746                                        s = s * s + w;
747                                        if (s > 0) {
748                                                s = Math.sqrt(s);
749                                                if (y < x) {
750                                                        s = -s;
751                                                }
752                                                s = x - w / ((y - x) / 2.0 + s);
753                                                for (int i = low; i <= n; i++) {
754                                                        H[i][i] -= s;
755                                                }
756                                                exshift += s;
757                                                x = y = w = 0.964;
758                                        }
759                                }
760
761                                iter = iter + 1; // (Could check iteration count here.)
762                                if (iter > SchurMaxIterations) {
763                                        throw new MaxIterationsExceededException(SchurMaxIterations);   // wilbur added as safeguard
764                                }
765
766                                // Look for two consecutive small sub-diagonal elements
767                                int m = n - 2;
768                                while (m >= l) {
769                                        z = H[m][m];
770                                        r = x - z;
771                                        s = y - z;
772                                        p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
773                                        q = H[m + 1][m + 1] - z - r - s;
774                                        r = H[m + 2][m + 1];
775                                        s = Math.abs(p) + Math.abs(q) + Math.abs(r);
776                                        p = p / s;
777                                        q = q / s;
778                                        r = r / s;
779                                        if (m == l) {
780                                                break;
781                                        }
782                                        if (Math.abs(H[m][m - 1]) * (Math.abs(q) + Math.abs(r)) < eps
783                                                        * (Math.abs(p) * (Math.abs(H[m - 1][m - 1]) + Math.abs(z) + Math.abs(H[m + 1][m + 1])))) {
784                                                break;
785                                        }
786                                        m--;
787                                }
788
789                                for (int i = m + 2; i <= n; i++) {
790                                        H[i][i - 2] = 0.0;
791                                        if (i > m + 2) {
792                                                H[i][i - 3] = 0.0;
793                                        }
794                                }
795
796                                // Double QR step involving rows l:n and columns m:n
797                                for (int k = m; k <= n - 1; k++) {
798                                        final boolean notlast = (k != n - 1);
799                                        if (k != m) {
800                                                p = H[k][k - 1];
801                                                q = H[k + 1][k - 1];
802                                                r = (notlast ? H[k + 2][k - 1] : 0.0);
803                                                x = Math.abs(p) + Math.abs(q) + Math.abs(r);
804                                                if (x != 0.0) {
805                                                        p = p / x;
806                                                        q = q / x;
807                                                        r = r / x;
808                                                }
809                                        }
810                                        if (x == 0.0) {
811                                                break;
812                                        }
813                                        s = Math.sqrt(p * p + q * q + r * r);
814                                        if (p < 0) {
815                                                s = -s;
816                                        }
817                                        if (s != 0) {
818                                                if (k != m) {
819                                                        H[k][k - 1] = -s * x;
820                                                } else if (l != m) {
821                                                        H[k][k - 1] = -H[k][k - 1];
822                                                }
823                                                p = p + s;
824                                                x = p / s;
825                                                y = q / s;
826                                                z = r / s;
827                                                q = q / p;
828                                                r = r / p;
829
830                                                // Row modification
831
832                                                for (int j = k; j < nn; j++) {
833                                                        p = H[k][j] + q * H[k + 1][j];
834                                                        if (notlast) {
835                                                                p = p + r * H[k + 2][j];
836                                                                H[k + 2][j] = H[k + 2][j] - p * z;
837                                                        }
838                                                        H[k][j] = H[k][j] - p * x;
839                                                        H[k + 1][j] = H[k + 1][j] - p * y;
840                                                }
841
842                                                // Column modification
843
844                                                for (int i = 0; i <= Math.min(n, k + 3); i++) {
845                                                        p = x * H[i][k] + y * H[i][k + 1];
846                                                        if (notlast) {
847                                                                p = p + z * H[i][k + 2];
848                                                                H[i][k + 2] = H[i][k + 2] - p * r;
849                                                        }
850                                                        H[i][k] = H[i][k] - p;
851                                                        H[i][k + 1] = H[i][k + 1] - p * q;
852                                                }
853
854                                                // Accumulate transformations
855
856                                                for (int i = low; i <= high; i++) {
857                                                        p = x * V[i][k] + y * V[i][k + 1];
858                                                        if (notlast) {
859                                                                p = p + z * V[i][k + 2];
860                                                                V[i][k + 2] = V[i][k + 2] - p * r;
861                                                        }
862                                                        V[i][k] = V[i][k] - p;
863                                                        V[i][k + 1] = V[i][k + 1] - p * q;
864                                                }
865                                        } // (s != 0)
866                                } // k loop
867                        } // check convergence
868                } // while (n >= low)
869
870                // Backsubstitute to find vectors of upper triangular form
871
872                if (norm == 0.0) {
873                        return;
874                }
875
876                for (n = nn - 1; n >= 0; n--) {
877                        p = d[n];
878                        q = e[n];
879
880                        // Real vector
881                        if (q == 0) {
882                                int l = n;
883                                H[n][n] = 1.0;
884                                for (int i = n - 1; i >= 0; i--) {
885                                        w = H[i][i] - p;
886                                        r = 0.0;
887                                        for (int j = l; j <= n; j++) {
888                                                r = r + H[i][j] * H[j][n];
889                                        }
890                                        if (e[i] < 0.0) {
891                                                z = w;
892                                                s = r;
893                                        } else {
894                                                l = i;
895                                                if (e[i] == 0.0) {
896                                                        if (w != 0.0) {
897                                                                H[i][n] = -r / w;
898                                                        } else {
899                                                                H[i][n] = -r / (eps * norm);
900                                                        }
901
902                                                        // Solve real equations
903
904                                                } else {
905                                                        x = H[i][i + 1];
906                                                        y = H[i + 1][i];
907                                                        q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
908                                                        t = (x * s - z * r) / q;
909                                                        H[i][n] = t;
910                                                        if (Math.abs(x) > Math.abs(z)) {
911                                                                H[i + 1][n] = (-r - w * t) / x;
912                                                        } else {
913                                                                H[i + 1][n] = (-s - y * t) / z;
914                                                        }
915                                                }
916
917                                                // Overflow control
918
919                                                t = Math.abs(H[i][n]);
920                                                if ((eps * t) * t > 1) {
921                                                        for (int j = i; j <= n; j++) {
922                                                                H[j][n] = H[j][n] / t;
923                                                        }
924                                                }
925                                        }
926                                }
927                                // Complex vector
928                        } else if (q < 0) {
929                                int l = n - 1;
930                                // Last vector component imaginary so matrix is triangular
931                                if (Math.abs(H[n][n - 1]) > Math.abs(H[n - 1][n])) {
932                                        H[n - 1][n - 1] = q / H[n][n - 1];
933                                        H[n - 1][n] = -(H[n][n] - p) / H[n][n - 1];
934                                } else {
935//                                      cdiv(0.0, -H[n - 1][n], H[n - 1][n - 1] - p, q);
936                                        Complex cpx = cdiv(0.0, -H[n - 1][n], H[n - 1][n - 1] - p, q);
937                                        H[n - 1][n - 1] = cpx.getReal();        //cdivr;
938                                        H[n - 1][n] = cpx.getImaginary();               //cdivi;
939                                }
940                                H[n][n - 1] = 0.0;
941                                H[n][n] = 1.0;
942                                for (int i = n - 2; i >= 0; i--) {
943                                        double ra, sa, vr, vi;
944                                        ra = 0.0;
945                                        sa = 0.0;
946                                        for (int j = l; j <= n; j++) {
947                                                ra = ra + H[i][j] * H[j][n - 1];
948                                                sa = sa + H[i][j] * H[j][n];
949                                        }
950                                        w = H[i][i] - p;
951
952                                        if (e[i] < 0.0) {
953                                                z = w;
954                                                r = ra;
955                                                s = sa;
956                                        } else {
957                                                l = i;
958                                                if (e[i] == 0) {
959                                                        // cdiv(-ra, -sa, w, q);
960                                                        Complex cpx = cdiv(-ra, -sa, w, q);
961                                                        H[i][n - 1] = cpx.getReal();    //cdivr;
962                                                        H[i][n] = cpx.getImaginary();   //cdivi;
963                                                } else {
964
965                                                        // Solve complex equations
966
967                                                        x = H[i][i + 1];
968                                                        y = H[i + 1][i];
969                                                        vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
970                                                        vi = (d[i] - p) * 2.0 * q;
971                                                        if (vr == 0.0 & vi == 0.0) {
972                                                                vr = eps * norm * (Math.abs(w) + Math.abs(q) + Math.abs(x) + Math.abs(y) + Math.abs(z));
973                                                        }
974//                                                      cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi);
975                                                        Complex cpx1 = cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi);
976                                                        H[i][n - 1] = cpx1.getReal();   //cdivr;
977                                                        H[i][n] = cpx1.getImaginary();  //cdivi;
978                                                        if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
979                                                                H[i + 1][n - 1] = (-ra - w * H[i][n - 1] + q * H[i][n]) / x;
980                                                                H[i + 1][n] = (-sa - w * H[i][n] - q * H[i][n - 1]) / x;
981                                                        } else {
982//                                                              cdiv(-r - y * H[i][n - 1], -s - y * H[i][n], z, q);
983                                                                Complex cpx2 = cdiv(-r - y * H[i][n - 1], -s - y * H[i][n], z, q);
984                                                                H[i + 1][n - 1] = cpx2.getReal();       //cdivr;
985                                                                H[i + 1][n] = cpx2.getImaginary();      //cdivi;
986                                                        }
987                                                }
988
989                                                // Overflow control
990
991                                                t = Math.max(Math.abs(H[i][n - 1]), Math.abs(H[i][n]));
992                                                if ((eps * t) * t > 1) {
993                                                        for (int j = i; j <= n; j++) {
994                                                                H[j][n - 1] = H[j][n - 1] / t;
995                                                                H[j][n] = H[j][n] / t;
996                                                        }
997                                                }
998                                        }
999                                }
1000                        }
1001                }
1002
1003                // Vectors of isolated roots
1004                for (int i = 0; i < nn; i++) {
1005                        if (i < low | i > high) {
1006                                for (int j = i; j < nn; j++) {
1007                                        V[i][j] = H[i][j];
1008                                }
1009                        }
1010                }
1011
1012                // Back transformation to get eigenvectors of original matrix
1013                for (int j = nn - 1; j >= low; j--) {
1014                        for (int i = low; i <= high; i++) {
1015                                z = 0.0;
1016                                for (int k = low; k <= Math.min(j, high); k++) {
1017                                        z = z + V[i][k] * H[k][j];
1018                                }
1019                                V[i][j] = z;
1020                        }
1021                }
1022        }
1023        
1024}