001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.math.eigen; 010 011import imagingbook.common.math.Matrix; 012import imagingbook.common.math.exception.MaxIterationsExceededException; 013import org.apache.commons.math3.complex.Complex; 014import org.apache.commons.math3.linear.MatrixUtils; 015import org.apache.commons.math3.linear.RealMatrix; 016import org.apache.commons.math3.linear.RealVector; 017 018/** 019 * Eigenvalues and eigenvectors of a real matrix. This code has been ported from 020 * https://math.nist.gov/javanumerics/jama/ (Version 1.0.3), with the public API (and some internals) adapted to Apache 021 * Commons Math. Most comments below were taken from the original sources. 022 * <p> 023 * This is intended as a temporary substitute for Apache Commons Math's implementation 024 * ({@link org.apache.commons.math3.linear.EigenDecomposition}, whose symmetry tolerance appears to be too low and thus 025 * returns complex eigenvalues for close-to-symmetric matrices although solutions with real eigenvalues exist. 026 * </p> 027 * <p> 028 * If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is 029 * orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix. 030 * </p> 031 * <p> 032 * If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and 033 * any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the 034 * eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, 035 * or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond(). 036 * </p> 037 * <p> 038 * See Appendix Sec. B.5 of [1] for more details. 039 * </p> 040 * <p> 041 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 042 * (2022). 043 * </p> 044 * 045 * @author WB 046 * @version 2022/06/19 047 * @see EigenDecompositionApache 048 * @see Eigensolver2x2 049 */ 050public class EigenDecompositionJama implements RealEigenDecomposition { 051 052 public static final double DefaultSymmetryTolerance = 1e-12; 053 public static final double DefaultZeroTolerance = 1e-12; 054 public static final int SchurMaxIterations = 30; 055 056 private final int n; // row and column dimension (square matrix). 057 private final boolean issymmetric; // symmetry flag. 058 private final double[] d; // real parts of eigenvalues. 059 private final double[] e; // imaginary parts of eigenvalues. 060 private final double[][] V; // array for internal storage of eigenvectors. 061 062 private double[][] H; // array for internal storage of nonsymmetric Hessenberg form. 063 private double[] ort; // working storage for nonsymmetric algorithm. 064 065 private final double symmetryTol; 066 private final double zeroTol; 067 068 /** 069 * Constructor. Checks for symmetry, then constructs the eigenvalue decomposition. 070 * 071 * @param M matrix to be decomposed 072 * @param symmetryTol absolute threshold for determining matrix symmetry 073 * @param zeroTol absolute threshold for determining zero matrix entries 074 * @throws MaxIterationsExceededException if the maximum number of iterations is exceeded (see 075 * {@link #SchurMaxIterations}) 076 */ 077 public EigenDecompositionJama(RealMatrix M, double symmetryTol, double zeroTol) 078 throws MaxIterationsExceededException { 079 080 final double[][] A = M.getData(); 081 this.symmetryTol = symmetryTol; 082 this.zeroTol = zeroTol; 083 this.n = M.getColumnDimension(); 084 this.V = new double[n][n]; 085 this.d = new double[n]; 086 this.e = new double[n]; 087 088 this.issymmetric = Matrix.isSymmetric(M, this.symmetryTol); 089 090// issymmetric = true; 091// for (int j = 0; (j < n) & issymmetric; j++) { 092// for (int i = 0; (i < n) & issymmetric; i++) { 093// issymmetric = (A[i][j] == A[j][i]); 094// } 095// } 096 097 if (issymmetric) { 098 for (int i = 0; i < n; i++) { 099 for (int j = 0; j < n; j++) { 100 V[i][j] = A[i][j]; 101 } 102 } 103 tred2(); // Tridiagonalize. 104 tql2(); // Diagonalize. 105 106 } else { 107 this.H = new double[n][n]; 108 this.ort = new double[n]; 109 for (int j = 0; j < n; j++) { 110 for (int i = 0; i < n; i++) { 111 H[i][j] = A[i][j]; 112 } 113 } 114 orthes(); // Reduce to Hessenberg form. 115 hqr2(); // Reduce Hessenberg to real Schur form. 116 } 117 } 118 119 /** 120 * Constructor using default tolerance setting. See also {@link #DefaultSymmetryTolerance}, 121 * {@link #DefaultZeroTolerance}. 122 * 123 * @param M matrix to be decomposed 124 */ 125 public EigenDecompositionJama(RealMatrix M) { 126 this(M, DefaultSymmetryTolerance, DefaultZeroTolerance); 127 } 128 129 // ------------------------ Public Methods ------------------------ 130 131 /** 132 * Returns true if the decomposed matrix is considered symmetric. See also 133 * {@link #EigenDecompositionJama(RealMatrix, double, double)}, {@link #DefaultSymmetryTolerance}. 134 * 135 * @return true if symmetric, false otherwise 136 */ 137 public boolean isSymmetric() { 138 return this.issymmetric; 139 } 140 141 /** 142 * Return the matrix of eigenvectors, which are its column vectors. 143 * 144 * @return the matrix of eigenvectors 145 */ 146 @Override 147 public RealMatrix getV() { 148 return MatrixUtils.createRealMatrix(V); 149 } 150 151 /** 152 * Return the transpose of the eigenvector matrix. The eigenvectors are the rows of the returned matrix. 153 * 154 * @return the transposed matrix of eigenvectors 155 */ 156 public RealMatrix getVT() { 157 return MatrixUtils.createRealMatrix(V).transpose(); 158 } 159 160 /** 161 * Returns a copy of the specified eigenvector, i.e., the associated column vector of the matrix returned by 162 * {@link #getV()}. 163 * 164 * @param k index of the eigenvector (counting from 0). 165 * @return a copy of the k-th eigenvector 166 */ 167 @Override 168 public RealVector getEigenvector(int k) { 169 double[] ev = new double[n]; 170 for (int i = 0; i < n; i++) { 171 ev[i] = V[i][k]; 172 } 173 return MatrixUtils.createRealVector(ev); 174 } 175 176 /** 177 * Return the real parts of the eigenvalues 178 * @return real(diag(D)) 179 */ 180 @Override 181 public double[] getRealEigenvalues() { 182 return d; 183 } 184 185 /** 186 * Return the imaginary parts of the eigenvalues 187 * @return imag(diag(D)) 188 */ 189 public double[] getImagEigenvalues() { 190 return e; 191 } 192 193 @Override 194 public double getRealEigenvalue(int k) { 195 return d[k]; 196 } 197 198 public double getImagEigenvalue(int k) { 199 return e[k]; 200 } 201 202 /** 203 * Returns whether the calculated eigenvalues are complex or real. The method performs a zero check on each element 204 * of the {@link #getImagEigenvalues()} array and returns {@code true} if any element is not equal to zero. 205 * 206 * @return {@code true} if any of the eigenvalues is complex, {@code false} otherwise 207 */ 208 @Override 209 public boolean hasComplexEigenvalues() { 210 for (int i = 0; i < e.length; i++) { 211 if (Math.abs(e[i]) > zeroTol) { 212 return true; 213 } 214 } 215 return false; 216 } 217 218// /** 219// * Return the block diagonal eigenvalue matrix 220// * @return D 221// */ 222// public RealMatrix getD() { 223// final double[][] D = new double[n][n]; 224// for (int i = 0; i < n; i++) { 225// for (int j = 0; j < n; j++) { 226// D[i][j] = 0.0; 227// } 228// D[i][i] = d[i]; 229// if (e[i] > 0) { 230// D[i][i + 1] = e[i]; 231// } else if (e[i] < 0) { 232// D[i][i - 1] = e[i]; 233// } 234// } 235// return MatrixUtils.createRealMatrix(D); 236// } 237 238 /** 239 * Gets the block diagonal matrix D of the decomposition. D is a block diagonal matrix. Real eigenvalues are on the 240 * diagonal while complex values are on 2x2 blocks {{real pos imaginary}, {neg imaginary, real}}. WB: Wonder if 241 * indexes are safe! 242 * 243 * @return D 244 */ 245 @Override 246 public RealMatrix getD() { 247 RealMatrix D = MatrixUtils.createRealDiagonalMatrix(d); 248 for (int i = 0; i < e.length; i++) { 249 if (e[i] > zeroTol) { 250 D.setEntry(i, i + 1, e[i]); 251 } else if (e[i] < -zeroTol) { 252 D.setEntry(i, i - 1, e[i]); 253 } 254 } 255 return D; 256 } 257 258 /** 259 * Calculates and returns the determinant of the decomposed matrix. 260 * 261 * @return the determinant of the matrix. 262 */ 263 public double getDeterminant() { 264 double determinant = 1.0; 265 for (double lambda : d) { 266 determinant = determinant * lambda; 267 } 268 return determinant; 269 } 270 271 // ------------------------ Private Methods ------------------------ 272 273 // Symmetric Householder reduction to tridiagonal form. 274 private void tred2() { 275 // This is derived from the Algol procedures tred2 by 276 // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for 277 // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding 278 // Fortran subroutine in EISPACK. 279 for (int j = 0; j < n; j++) { 280 d[j] = V[n - 1][j]; 281 } 282 283 // Householder reduction to tridiagonal form. 284 for (int i = n - 1; i > 0; i--) { 285 // Scale to avoid under/overflow. 286 double scale = 0.0; 287 double h = 0.0; 288 for (int k = 0; k < i; k++) { 289 scale = scale + Math.abs(d[k]); 290 } 291 if (scale == 0.0) { 292 e[i] = d[i - 1]; 293 for (int j = 0; j < i; j++) { 294 d[j] = V[i - 1][j]; 295 V[i][j] = 0.0; 296 V[j][i] = 0.0; 297 } 298 } else { 299 // Generate Householder vector. 300 for (int k = 0; k < i; k++) { 301 d[k] /= scale; 302 h += d[k] * d[k]; 303 } 304 double f = d[i - 1]; 305 double g = Math.sqrt(h); 306 if (f > 0) { 307 g = -g; 308 } 309 e[i] = scale * g; 310 h = h - f * g; 311 d[i - 1] = f - g; 312 for (int j = 0; j < i; j++) { 313 e[j] = 0.0; 314 } 315 316 // Apply similarity transformation to remaining columns. 317 for (int j = 0; j < i; j++) { 318 f = d[j]; 319 V[j][i] = f; 320 g = e[j] + V[j][j] * f; 321 for (int k = j + 1; k <= i - 1; k++) { 322 g += V[k][j] * d[k]; 323 e[k] += V[k][j] * f; 324 } 325 e[j] = g; 326 } 327 f = 0.0; 328 for (int j = 0; j < i; j++) { 329 e[j] /= h; 330 f += e[j] * d[j]; 331 } 332 final double hh = f / (h + h); 333 for (int j = 0; j < i; j++) { 334 e[j] -= hh * d[j]; 335 } 336 for (int j = 0; j < i; j++) { 337 f = d[j]; 338 g = e[j]; 339 for (int k = j; k <= i - 1; k++) { 340 V[k][j] -= (f * e[k] + g * d[k]); 341 } 342 d[j] = V[i - 1][j]; 343 V[i][j] = 0.0; 344 } 345 } 346 d[i] = h; 347 } 348 349 // Accumulate transformations. 350 for (int i = 0; i < n - 1; i++) { 351 V[n - 1][i] = V[i][i]; 352 V[i][i] = 1.0; 353 final double h = d[i + 1]; 354 if (h != 0.0) { 355 for (int k = 0; k <= i; k++) { 356 d[k] = V[k][i + 1] / h; 357 } 358 for (int j = 0; j <= i; j++) { 359 double g = 0.0; 360 for (int k = 0; k <= i; k++) { 361 g += V[k][i + 1] * V[k][j]; 362 } 363 for (int k = 0; k <= i; k++) { 364 V[k][j] -= g * d[k]; 365 } 366 } 367 } 368 for (int k = 0; k <= i; k++) { 369 V[k][i + 1] = 0.0; 370 } 371 } 372 for (int j = 0; j < n; j++) { 373 d[j] = V[n - 1][j]; 374 V[n - 1][j] = 0.0; 375 } 376 V[n - 1][n - 1] = 1.0; 377 e[0] = 0.0; 378 } 379 380 // Symmetric tridiagonal QL algorithm. 381 private void tql2() { 382 // This is derived from the Algol procedures tql2, by 383 // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for 384 // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding 385 // Fortran subroutine in EISPACK. 386 for (int i = 1; i < n; i++) { 387 e[i - 1] = e[i]; 388 } 389 e[n - 1] = 0.0; 390 391 double f = 0.0; 392 double tst1 = 0.0; 393 final double eps = Math.pow(2.0, -52.0); 394 for (int l = 0; l < n; l++) { 395 // Find small subdiagonal element 396 tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l])); 397 int m = l; 398 while (m < n) { 399 if (Math.abs(e[m]) <= eps * tst1) { 400 break; 401 } 402 m++; 403 } 404 405 // If m == l, d[l] is an eigenvalue, 406 // otherwise, iterate. 407 if (m > l) { 408 int iter = 0; 409 do { 410 iter = iter + 1; // (Could check iteration count here.) 411 // Compute implicit shift 412 double g = d[l]; 413 double p = (d[l + 1] - g) / (2.0 * e[l]); 414 double r = Math.hypot(p, 1.0); 415 if (p < 0) { 416 r = -r; 417 } 418 d[l] = e[l] / (p + r); 419 d[l + 1] = e[l] * (p + r); 420 final double dl1 = d[l + 1]; 421 double h = g - d[l]; 422 for (int i = l + 2; i < n; i++) { 423 d[i] -= h; 424 } 425 f = f + h; 426 427 // Implicit QL transformation. 428 p = d[m]; 429 double c = 1.0; 430 double c2 = c; 431 double c3 = c; 432 final double el1 = e[l + 1]; 433 double s = 0.0; 434 double s2 = 0.0; 435 for (int i = m - 1; i >= l; i--) { 436 c3 = c2; 437 c2 = c; 438 s2 = s; 439 g = c * e[i]; 440 h = c * p; 441 r = Math.hypot(p, e[i]); 442 e[i + 1] = s * r; 443 s = e[i] / r; 444 c = p / r; 445 p = c * d[i] - s * g; 446 d[i + 1] = h + s * (c * g + s * d[i]); 447 448 // Accumulate transformation. 449 for (int k = 0; k < n; k++) { 450 h = V[k][i + 1]; 451 V[k][i + 1] = s * V[k][i] + c * h; 452 V[k][i] = c * V[k][i] - s * h; 453 } 454 } 455 p = -s * s2 * c3 * el1 * e[l] / dl1; 456 e[l] = s * p; 457 d[l] = c * p; 458 459 // Check for convergence. 460 } while (Math.abs(e[l]) > eps * tst1); 461 } 462 d[l] = d[l] + f; 463 e[l] = 0.0; 464 } 465 466 // Sort eigenvalues and corresponding vectors. 467 for (int i = 0; i < n - 1; i++) { 468 int k = i; 469 double p = d[i]; 470 for (int j = i + 1; j < n; j++) { 471 if (d[j] < p) { 472 k = j; 473 p = d[j]; 474 } 475 } 476 if (k != i) { 477 d[k] = d[i]; 478 d[i] = p; 479 for (int j = 0; j < n; j++) { 480 p = V[j][i]; 481 V[j][i] = V[j][k]; 482 V[j][k] = p; 483 } 484 } 485 } 486 } 487 488 // Nonsymmetric reduction to Hessenberg form. 489 private void orthes() { 490 // This is derived from the Algol procedures orthes and ortran, 491 // by Martin and Wilkinson, Handbook for Auto. Comp., 492 // Vol.ii-Linear Algebra, and the corresponding 493 // Fortran subroutines in EISPACK. 494 final int low = 0; 495 final int high = n - 1; 496 497 for (int m = low + 1; m <= high - 1; m++) { 498 499 // Scale column. 500 501 double scale = 0.0; 502 for (int i = m; i <= high; i++) { 503 scale = scale + Math.abs(H[i][m - 1]); 504 } 505 if (scale != 0.0) { 506 // Compute Householder transformation. 507 double h = 0.0; 508 for (int i = high; i >= m; i--) { 509 ort[i] = H[i][m - 1] / scale; 510 h += ort[i] * ort[i]; 511 } 512 double g = Math.sqrt(h); 513 if (ort[m] > 0) { 514 g = -g; 515 } 516 h = h - ort[m] * g; 517 ort[m] = ort[m] - g; 518 519 // Apply Householder similarity transformation 520 // H = (I-u*u'/h)*H*(I-u*u')/h) 521 for (int j = m; j < n; j++) { 522 double f = 0.0; 523 for (int i = high; i >= m; i--) { 524 f += ort[i] * H[i][j]; 525 } 526 f = f / h; 527 for (int i = m; i <= high; i++) { 528 H[i][j] -= f * ort[i]; 529 } 530 } 531 532 for (int i = 0; i <= high; i++) { 533 double f = 0.0; 534 for (int j = high; j >= m; j--) { 535 f += ort[j] * H[i][j]; 536 } 537 f = f / h; 538 for (int j = m; j <= high; j++) { 539 H[i][j] -= f * ort[j]; 540 } 541 } 542 ort[m] = scale * ort[m]; 543 H[m][m - 1] = scale * g; 544 } 545 } 546 547 // Accumulate transformations (Algol's ortran). 548 for (int i = 0; i < n; i++) { 549 for (int j = 0; j < n; j++) { 550 V[i][j] = (i == j ? 1.0 : 0.0); 551 } 552 } 553 554 for (int m = high - 1; m >= low + 1; m--) { 555 if (H[m][m - 1] != 0.0) { 556 for (int i = m + 1; i <= high; i++) { 557 ort[i] = H[i][m - 1]; 558 } 559 for (int j = m; j <= high; j++) { 560 double g = 0.0; 561 for (int i = m; i <= high; i++) { 562 g += ort[i] * V[i][j]; 563 } 564 // Double division avoids possible underflow 565 g = (g / ort[m]) / H[m][m - 1]; 566 for (int i = m; i <= high; i++) { 567 V[i][j] += g * ort[i]; 568 } 569 } 570 } 571 } 572 } 573 574// // Complex scalar division (old) 575// private transient double cdivr, cdivi; 576// 577// @Deprecated 578// private void cdivOld(final double xr, final double xi, final double yr, final double yi) { 579// double r, d; 580// if (Math.abs(yr) > Math.abs(yi)) { 581// r = yi / yr; 582// d = yr + r * yi; 583// cdivr = (xr + r * xi) / d; 584// cdivi = (xi - r * xr) / d; 585// } else { 586// r = yr / yi; 587// d = yi + r * yr; 588// cdivr = (r * xr + xi) / d; 589// cdivi = (r * xi - xr) / d; 590// } 591// } 592 593 /** 594 * Performs a division of two complex numbers. 595 * 596 * @param xr real part of the first number 597 * @param xi imaginary part of the first number 598 * @param yr real part of the second number 599 * @param yi imaginary part of the second number 600 * @return result of the complex division 601 */ 602 private Complex cdiv(final double xr, final double xi, 603 final double yr, final double yi) { 604 return new Complex(xr, xi).divide(new Complex(yr, yi)); 605 } 606 607 // Nonsymmetric reduction from Hessenberg to real Schur form. 608 private void hqr2() { 609 // This is derived from the Algol procedure hqr2, 610 // by Martin and Wilkinson, Handbook for Auto. Comp., 611 // Vol.ii-Linear Algebra, and the corresponding 612 // Fortran subroutine in EISPACK. 613 614 // Initialize 615 final int nn = this.n; 616 int n = nn - 1; 617 final int low = 0; 618 final int high = nn - 1; 619 final double eps = Math.pow(2.0, -52.0); 620 double exshift = 0.0; 621 double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y; 622 623 // Store roots isolated by balanc and compute matrix norm 624 double norm = 0.0; 625 for (int i = 0; i < nn; i++) { 626 if (i < low | i > high) { 627 d[i] = H[i][i]; 628 e[i] = 0.0; 629 } 630 for (int j = Math.max(i - 1, 0); j < nn; j++) { 631 norm = norm + Math.abs(H[i][j]); 632 } 633 } 634 635 // Outer loop over eigenvalue index 636 int iter = 0; 637 while (n >= low) { 638 // Look for single small sub-diagonal element 639 int l = n; 640 while (l > low) { 641 s = Math.abs(H[l - 1][l - 1]) + Math.abs(H[l][l]); 642 if (s == 0.0) { 643 s = norm; 644 } 645 if (Math.abs(H[l][l - 1]) < eps * s) { 646 break; 647 } 648 l--; 649 } 650 651 // Check for convergence 652 // One root found 653 if (l == n) { 654 H[n][n] = H[n][n] + exshift; 655 d[n] = H[n][n]; 656 e[n] = 0.0; 657 n--; 658 iter = 0; 659 // Two roots found 660 } else if (l == n - 1) { 661 w = H[n][n - 1] * H[n - 1][n]; 662 p = (H[n - 1][n - 1] - H[n][n]) / 2.0; 663 q = p * p + w; 664 z = Math.sqrt(Math.abs(q)); 665 H[n][n] = H[n][n] + exshift; 666 H[n - 1][n - 1] = H[n - 1][n - 1] + exshift; 667 x = H[n][n]; 668 669 // Real pair 670 if (q >= 0) { 671 if (p >= 0) { 672 z = p + z; 673 } else { 674 z = p - z; 675 } 676 d[n - 1] = x + z; 677 d[n] = d[n - 1]; 678 if (z != 0.0) { 679 d[n] = x - w / z; 680 } 681 e[n - 1] = 0.0; 682 e[n] = 0.0; 683 x = H[n][n - 1]; 684 s = Math.abs(x) + Math.abs(z); 685 p = x / s; 686 q = z / s; 687 r = Math.sqrt(p * p + q * q); 688 p = p / r; 689 q = q / r; 690 691 // Row modification 692 for (int j = n - 1; j < nn; j++) { 693 z = H[n - 1][j]; 694 H[n - 1][j] = q * z + p * H[n][j]; 695 H[n][j] = q * H[n][j] - p * z; 696 } 697 698 // Column modification 699 for (int i = 0; i <= n; i++) { 700 z = H[i][n - 1]; 701 H[i][n - 1] = q * z + p * H[i][n]; 702 H[i][n] = q * H[i][n] - p * z; 703 } 704 705 // Accumulate transformations 706 for (int i = low; i <= high; i++) { 707 z = V[i][n - 1]; 708 V[i][n - 1] = q * z + p * V[i][n]; 709 V[i][n] = q * V[i][n] - p * z; 710 } 711 712 // Complex pair 713 } else { 714 d[n - 1] = x + p; 715 d[n] = x + p; 716 e[n - 1] = z; 717 e[n] = -z; 718 } 719 n = n - 2; 720 iter = 0; 721 // No convergence yet 722 } else { 723 // Form shift 724 x = H[n][n]; 725 y = 0.0; 726 w = 0.0; 727 if (l < n) { 728 y = H[n - 1][n - 1]; 729 w = H[n][n - 1] * H[n - 1][n]; 730 } 731 732 // Wilkinson's original ad hoc shift 733 if (iter == 10) { 734 exshift += x; 735 for (int i = low; i <= n; i++) { 736 H[i][i] -= x; 737 } 738 s = Math.abs(H[n][n - 1]) + Math.abs(H[n - 1][n - 2]); 739 x = y = 0.75 * s; 740 w = -0.4375 * s * s; 741 } 742 743 // MATLAB's new ad hoc shift 744 if (iter == 30) { 745 s = (y - x) / 2.0; 746 s = s * s + w; 747 if (s > 0) { 748 s = Math.sqrt(s); 749 if (y < x) { 750 s = -s; 751 } 752 s = x - w / ((y - x) / 2.0 + s); 753 for (int i = low; i <= n; i++) { 754 H[i][i] -= s; 755 } 756 exshift += s; 757 x = y = w = 0.964; 758 } 759 } 760 761 iter = iter + 1; // (Could check iteration count here.) 762 if (iter > SchurMaxIterations) { 763 throw new MaxIterationsExceededException(SchurMaxIterations); // wilbur added as safeguard 764 } 765 766 // Look for two consecutive small sub-diagonal elements 767 int m = n - 2; 768 while (m >= l) { 769 z = H[m][m]; 770 r = x - z; 771 s = y - z; 772 p = (r * s - w) / H[m + 1][m] + H[m][m + 1]; 773 q = H[m + 1][m + 1] - z - r - s; 774 r = H[m + 2][m + 1]; 775 s = Math.abs(p) + Math.abs(q) + Math.abs(r); 776 p = p / s; 777 q = q / s; 778 r = r / s; 779 if (m == l) { 780 break; 781 } 782 if (Math.abs(H[m][m - 1]) * (Math.abs(q) + Math.abs(r)) < eps 783 * (Math.abs(p) * (Math.abs(H[m - 1][m - 1]) + Math.abs(z) + Math.abs(H[m + 1][m + 1])))) { 784 break; 785 } 786 m--; 787 } 788 789 for (int i = m + 2; i <= n; i++) { 790 H[i][i - 2] = 0.0; 791 if (i > m + 2) { 792 H[i][i - 3] = 0.0; 793 } 794 } 795 796 // Double QR step involving rows l:n and columns m:n 797 for (int k = m; k <= n - 1; k++) { 798 final boolean notlast = (k != n - 1); 799 if (k != m) { 800 p = H[k][k - 1]; 801 q = H[k + 1][k - 1]; 802 r = (notlast ? H[k + 2][k - 1] : 0.0); 803 x = Math.abs(p) + Math.abs(q) + Math.abs(r); 804 if (x != 0.0) { 805 p = p / x; 806 q = q / x; 807 r = r / x; 808 } 809 } 810 if (x == 0.0) { 811 break; 812 } 813 s = Math.sqrt(p * p + q * q + r * r); 814 if (p < 0) { 815 s = -s; 816 } 817 if (s != 0) { 818 if (k != m) { 819 H[k][k - 1] = -s * x; 820 } else if (l != m) { 821 H[k][k - 1] = -H[k][k - 1]; 822 } 823 p = p + s; 824 x = p / s; 825 y = q / s; 826 z = r / s; 827 q = q / p; 828 r = r / p; 829 830 // Row modification 831 832 for (int j = k; j < nn; j++) { 833 p = H[k][j] + q * H[k + 1][j]; 834 if (notlast) { 835 p = p + r * H[k + 2][j]; 836 H[k + 2][j] = H[k + 2][j] - p * z; 837 } 838 H[k][j] = H[k][j] - p * x; 839 H[k + 1][j] = H[k + 1][j] - p * y; 840 } 841 842 // Column modification 843 844 for (int i = 0; i <= Math.min(n, k + 3); i++) { 845 p = x * H[i][k] + y * H[i][k + 1]; 846 if (notlast) { 847 p = p + z * H[i][k + 2]; 848 H[i][k + 2] = H[i][k + 2] - p * r; 849 } 850 H[i][k] = H[i][k] - p; 851 H[i][k + 1] = H[i][k + 1] - p * q; 852 } 853 854 // Accumulate transformations 855 856 for (int i = low; i <= high; i++) { 857 p = x * V[i][k] + y * V[i][k + 1]; 858 if (notlast) { 859 p = p + z * V[i][k + 2]; 860 V[i][k + 2] = V[i][k + 2] - p * r; 861 } 862 V[i][k] = V[i][k] - p; 863 V[i][k + 1] = V[i][k + 1] - p * q; 864 } 865 } // (s != 0) 866 } // k loop 867 } // check convergence 868 } // while (n >= low) 869 870 // Backsubstitute to find vectors of upper triangular form 871 872 if (norm == 0.0) { 873 return; 874 } 875 876 for (n = nn - 1; n >= 0; n--) { 877 p = d[n]; 878 q = e[n]; 879 880 // Real vector 881 if (q == 0) { 882 int l = n; 883 H[n][n] = 1.0; 884 for (int i = n - 1; i >= 0; i--) { 885 w = H[i][i] - p; 886 r = 0.0; 887 for (int j = l; j <= n; j++) { 888 r = r + H[i][j] * H[j][n]; 889 } 890 if (e[i] < 0.0) { 891 z = w; 892 s = r; 893 } else { 894 l = i; 895 if (e[i] == 0.0) { 896 if (w != 0.0) { 897 H[i][n] = -r / w; 898 } else { 899 H[i][n] = -r / (eps * norm); 900 } 901 902 // Solve real equations 903 904 } else { 905 x = H[i][i + 1]; 906 y = H[i + 1][i]; 907 q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; 908 t = (x * s - z * r) / q; 909 H[i][n] = t; 910 if (Math.abs(x) > Math.abs(z)) { 911 H[i + 1][n] = (-r - w * t) / x; 912 } else { 913 H[i + 1][n] = (-s - y * t) / z; 914 } 915 } 916 917 // Overflow control 918 919 t = Math.abs(H[i][n]); 920 if ((eps * t) * t > 1) { 921 for (int j = i; j <= n; j++) { 922 H[j][n] = H[j][n] / t; 923 } 924 } 925 } 926 } 927 // Complex vector 928 } else if (q < 0) { 929 int l = n - 1; 930 // Last vector component imaginary so matrix is triangular 931 if (Math.abs(H[n][n - 1]) > Math.abs(H[n - 1][n])) { 932 H[n - 1][n - 1] = q / H[n][n - 1]; 933 H[n - 1][n] = -(H[n][n] - p) / H[n][n - 1]; 934 } else { 935// cdiv(0.0, -H[n - 1][n], H[n - 1][n - 1] - p, q); 936 Complex cpx = cdiv(0.0, -H[n - 1][n], H[n - 1][n - 1] - p, q); 937 H[n - 1][n - 1] = cpx.getReal(); //cdivr; 938 H[n - 1][n] = cpx.getImaginary(); //cdivi; 939 } 940 H[n][n - 1] = 0.0; 941 H[n][n] = 1.0; 942 for (int i = n - 2; i >= 0; i--) { 943 double ra, sa, vr, vi; 944 ra = 0.0; 945 sa = 0.0; 946 for (int j = l; j <= n; j++) { 947 ra = ra + H[i][j] * H[j][n - 1]; 948 sa = sa + H[i][j] * H[j][n]; 949 } 950 w = H[i][i] - p; 951 952 if (e[i] < 0.0) { 953 z = w; 954 r = ra; 955 s = sa; 956 } else { 957 l = i; 958 if (e[i] == 0) { 959 // cdiv(-ra, -sa, w, q); 960 Complex cpx = cdiv(-ra, -sa, w, q); 961 H[i][n - 1] = cpx.getReal(); //cdivr; 962 H[i][n] = cpx.getImaginary(); //cdivi; 963 } else { 964 965 // Solve complex equations 966 967 x = H[i][i + 1]; 968 y = H[i + 1][i]; 969 vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; 970 vi = (d[i] - p) * 2.0 * q; 971 if (vr == 0.0 & vi == 0.0) { 972 vr = eps * norm * (Math.abs(w) + Math.abs(q) + Math.abs(x) + Math.abs(y) + Math.abs(z)); 973 } 974// cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi); 975 Complex cpx1 = cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi); 976 H[i][n - 1] = cpx1.getReal(); //cdivr; 977 H[i][n] = cpx1.getImaginary(); //cdivi; 978 if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) { 979 H[i + 1][n - 1] = (-ra - w * H[i][n - 1] + q * H[i][n]) / x; 980 H[i + 1][n] = (-sa - w * H[i][n] - q * H[i][n - 1]) / x; 981 } else { 982// cdiv(-r - y * H[i][n - 1], -s - y * H[i][n], z, q); 983 Complex cpx2 = cdiv(-r - y * H[i][n - 1], -s - y * H[i][n], z, q); 984 H[i + 1][n - 1] = cpx2.getReal(); //cdivr; 985 H[i + 1][n] = cpx2.getImaginary(); //cdivi; 986 } 987 } 988 989 // Overflow control 990 991 t = Math.max(Math.abs(H[i][n - 1]), Math.abs(H[i][n])); 992 if ((eps * t) * t > 1) { 993 for (int j = i; j <= n; j++) { 994 H[j][n - 1] = H[j][n - 1] / t; 995 H[j][n] = H[j][n] / t; 996 } 997 } 998 } 999 } 1000 } 1001 } 1002 1003 // Vectors of isolated roots 1004 for (int i = 0; i < nn; i++) { 1005 if (i < low | i > high) { 1006 for (int j = i; j < nn; j++) { 1007 V[i][j] = H[i][j]; 1008 } 1009 } 1010 } 1011 1012 // Back transformation to get eigenvectors of original matrix 1013 for (int j = nn - 1; j >= low; j--) { 1014 for (int i = low; i <= high; i++) { 1015 z = 0.0; 1016 for (int k = low; k <= Math.min(j, high); k++) { 1017 z = z + V[i][k] * H[k][j]; 1018 } 1019 V[i][j] = z; 1020 } 1021 } 1022 } 1023 1024}