001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.math; 011 012//import org.apache.commons.math3.linear.MatrixUtils; 013import org.apache.commons.math3.linear.EigenDecomposition; 014import org.apache.commons.math3.linear.MatrixUtils; 015import org.apache.commons.math3.linear.RealMatrix; 016import org.apache.commons.math3.stat.correlation.Covariance; 017 018/** 019 * This class defines static methods for statistical calculations. 020 * 021 * @author WB 022 * 023 */ 024public abstract class Statistics { 025 026 private Statistics() {} 027 028 /** 029 * Calculates the mean vector for a sequence of sample vectors. 030 * @param samples a 2D array of m-dimensional vectors ({@code }double[n][m]}) 031 * @return the mean vector for the sample data (of length m) 032 */ 033 public static double[] meanVector(double[][] samples) { 034 final int n = samples.length; 035 final int m = samples[0].length; 036 double[] mean = new double[m]; 037 for (int k = 0; k < n; k++) { 038 for (int i = 0; i < m; i++) { 039 mean[i] = mean[i] + samples[k][i]; 040 } 041 } 042 for (int i = 0; i < m; i++) { 043 mean[i] = mean[i] / n; 044 } 045 return mean; 046 } 047 048 /** 049 * Calculates the covariance matrix for a sequence of sample vectors. Takes a sequence of n data samples, each of 050 * dimension m. The data element {@code samples[i][j]} refers to the j-th component of sample i. No statistical bias 051 * correction is applied. Uses {@link Covariance} from Apache Commons Math. 052 * 053 * @param samples a 2D array of m-dimensional vectors ({@code }double[n][m]}) 054 * @return the covariance matrix for the sample data (of dimension m x m) 055 * @see Covariance 056 */ 057 public static double[][] covarianceMatrix(double[][] samples) { 058 return covarianceMatrix(samples, false); 059 } 060 061 /** 062 * Calculates the covariance matrix for a sequence of sample vectors. Takes a sequence of n data samples, each of 063 * dimension m. The data element {@code samples[i][j]} refers to the j-th component of sample i. Statistical bias 064 * correction is optionally applied. Uses {@link Covariance} from Apache Commons Math. 065 * 066 * @param samples a 2D array of m-dimensional vectors (double[n][m]). 067 * @param biasCorrect if {@code true}, statistical bias correction is applied. 068 * @return the covariance matrix for the sample data (of dimension m x m). 069 * @see Covariance 070 */ 071 public static double[][] covarianceMatrix(double[][] samples, boolean biasCorrect) { 072 Covariance cov = new Covariance(samples, biasCorrect); 073 return cov.getCovarianceMatrix().getData(); 074 } 075 076 /** 077 * Conditions the supplied covariance matrix by enforcing positive eigenvalues. 078 * 079 * @param cov original covariance matrix 080 * @param minDiagVal the minimum positive value of diagonal elements 081 * @return conditioned covariance matrix 082 */ 083 public static double[][] conditionCovarianceMatrix(double[][] cov, double minDiagVal) { 084 RealMatrix C = MatrixUtils.createRealMatrix(cov); 085 return conditionCovarianceMatrix(C, minDiagVal).getData(); 086 } 087 088 /** 089 * Conditions the supplied covariance matrix by enforcing positive eigenvalues. 090 * 091 * @param cov original covariance matrix 092 * @param minDiagVal the minimum positive value of diagonal elements 093 * @return conditioned covariance matrix 094 */ 095 public static RealMatrix conditionCovarianceMatrix(RealMatrix cov, double minDiagVal) { 096 if (!cov.isSquare()) { 097 throw new IllegalArgumentException("covariance matrix must be square"); 098 } 099 EigenDecomposition ed = new EigenDecomposition(cov); // S -> V . D . V^T 100 RealMatrix V = ed.getV(); 101 RealMatrix D = ed.getD(); // diagonal matrix of eigenvalues 102 RealMatrix VT = ed.getVT(); 103 for (int i = 0; i < D.getRowDimension(); i++) { 104 D.setEntry(i, i, Math.max(D.getEntry(i, i), minDiagVal)); // setting eigenvalues to zero is not enough! 105 } 106 return V.multiply(D).multiply(VT); 107 } 108 109// /** 110// * example from UTICS-C Appendix: 111// * N = 4 samples 112// * K = 3 dimensions 113// * @param args ignored 114// */ 115// public static void main(String[] args) { 116// 117// boolean BIAS_CORRECT = false; 118// 119// // example: n = 4 samples of dimension m = 3: 120// // samples[i][j], i = column (sample index), j = row (dimension index). 121// double[][] samples = { 122// {75, 37, 12}, // i = 0 123// {41, 27, 20}, // i = 1 124// {93, 81, 11}, // i = 2 125// {12, 48, 52} // i = 3 126// }; 127// 128// // covariance matrix Cov (3x3) 129// double[][] cov = covarianceMatrix(samples, BIAS_CORRECT); 130// System.out.println("cov = \n" + Matrix.toString(cov)); 131// 132// System.out.println(); 133// 134// double[][] icov = Matrix.inverse(cov); 135// System.out.println("icov = \n" + Matrix.toString(icov)); 136// 137// System.out.println(); 138// 139// double trace = MatrixUtils.createRealMatrix(cov).getTrace(); 140// System.out.println("trace(cov) = " + trace); 141// double Fnorm = MatrixUtils.createRealMatrix(cov).getFrobeniusNorm(); 142// System.out.println("Fnorm(cov) = " + Fnorm); 143// } 144 145/* Results (bias-corrected): 146cov = 147{{1296.250, 442.583, -627.250}, 148{442.583, 550.250, -70.917}, 149{-627.250, -70.917, 370.917}} 150 151icov = 152{{0.024, -0.014, 0.038}, 153{-0.014, 0.011, -0.022}, 154{0.038, -0.022, 0.063}} 155*/ 156 157/* verified with Mathematica 158X1 = {75, 37, 12}; X2 = {41, 27, 20}; X3 = {93, 81, 11}; X4 = {12, 48, 52}; 159samples = {X1, X2, X3, X4} 160N[Covariance[samples]] 161-> {{1296.25, 442.583, -627.25}, {442.583, 550.25, -70.9167}, {-627.25, -70.9167, 370.917}} 162*/ 163 164/* Results (NON bias-corrected): 165cov = 166{{972.188, 331.938, -470.438}, 167{331.938, 412.688, -53.188}, 168{-470.438, -53.188, 278.188}} 169 170icov = {{0.032, -0.019, 0.051}, 171{-0.019, 0.014, -0.030}, 172{0.051, -0.030, 0.083}} 173*/ 174 175}