001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.math;
011
012import imagingbook.common.math.exception.DivideByZeroException;
013import org.apache.commons.math3.linear.Array2DRowRealMatrix;
014import org.apache.commons.math3.linear.CholeskyDecomposition;
015import org.apache.commons.math3.linear.DecompositionSolver;
016import org.apache.commons.math3.linear.LUDecomposition;
017import org.apache.commons.math3.linear.MatrixUtils;
018import org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException;
019import org.apache.commons.math3.linear.RealMatrix;
020import org.apache.commons.math3.linear.RealVector;
021import org.apache.commons.math3.linear.SingularMatrixException;
022
023import java.io.ByteArrayOutputStream;
024import java.io.PrintStream;
025import java.util.Arrays;
026import java.util.Locale;
027
028import static imagingbook.common.math.Arithmetic.sqr;
029
030/**
031 * <p>
032 * This class defines a set of static methods for calculations with vectors and matrices using native Java arrays
033 * without any enclosing object structures. Matrices are simple two-dimensional arrays {@code A[r][c]}, where {@code r}
034 * is the (vertical) <strong>row</strong> index and {@code c} is the (horizontal) <strong>column</strong> index (as
035 * common in linear algebra). This means that matrices are really vectors of row vectors. Only arrays of type
036 * {@code float} and {@code double} are supported. All matrices are assumed to be rectangular (i.e., all rows are of
037 * equal length).
038 * </p>
039 * <p>
040 * Note: Methods named with a trailing '{@code D}' (e.g., {@link #multiplyD(double, double[])}) operate destructively,
041 * i.e., modify one of the supplied arguments.
042 * </p>
043 *
044 * @author WB
045 * @version 2022/08/29
046 */
047@SuppressWarnings("serial")
048public abstract class Matrix {
049
050        private Matrix() {
051        }
052
053        /**
054         * Locale used for printing decimal numbers by {@code toString()} methods.
055         */
056        public static Locale PrintLocale = Locale.US;
057
058        /**
059         * Character used to separate successive vector and matrix elements by {@code toString()} methods.
060         */
061        public static char SeparationChar = ',';
062
063        /**
064         * Leading delimiter used for lists of vector and matrix elements by {@code toString()} methods.
065         */
066        public static char LeftDelimitChar = '{';
067
068        /**
069         * Trailing delimiter used for lists of vector and matrix elements by {@code toString()} methods.
070         */
071        public static char RightDelimitChar = '}';
072
073        // ----  Matrix creation -----------------------------
074
075        /**
076         * <p>
077         * Creates and returns a {@code double[][]} matrix containing the specified values. Throws a
078         * {@link IllegalArgumentException} if the number of supplied values does not exactly match the matrix size. Example
079         * for creating a 2x3 matrix:
080         * </p>
081         * <pre>
082         * double[][] A = makeDoubleMatrix(2, 3,
083         *              1.0, 2.0, 3.0,
084         *              4.0, 5.0, 6.0 );</pre>
085         * <p>
086         * See also {@link #flatten(double[][])}.
087         * </p>
088         *
089         * @param rows the number of matrix rows
090         * @param cols the number of matrix columns
091         * @param values a sequence of matrix values in row-major order (may also be passed as a {@code double[]})
092         * @return a {@code double[][]} matrix
093         */
094        public static double[][] makeDoubleMatrix(final int rows, final int cols, final double... values) {
095                final double[][] A = new double[rows][cols];
096                if (values == null || values.length == 0) {
097                        return A;
098                } else if (values.length != rows * cols) {
099                        throw new IllegalArgumentException("wrong number of matrix values: "
100                                        + values.length + " instead of " + rows * cols);
101                }
102
103                for (int i = 0, r = 0; r < rows; r++) {
104                        for (int c = 0; c < cols; c++) {
105                                A[r][c] = values[i];
106                                i++;
107                        }
108                }
109                return A;
110        }
111
112        /**
113         * <p>
114         * Creates and returns a {@code float[][]} matrix containing the specified values. Throws a
115         * {@link IllegalArgumentException} if the number of supplied values does not exactly match the matrix size. Example
116         * for creating a 2x3 matrix:
117         * </p>
118         * <pre>
119         * float[][] A = makeFloatMatrix(2, 3,
120         *              1.0f, 2.0f, 3.0f,
121         *              4.0f, 5.0f, 6.0f );</pre>
122         * <p>
123         * See also {@link #flatten(float[][])}.
124         * </p>
125         *
126         * @param rows the number of matrix rows
127         * @param cols the number of matrix columns
128         * @param values a sequence of matrix values in row-major order (may also be passed as a {@code float[]})
129         * @return a {@code float[][]} matrix
130         */
131        public static float[][] makeFloatMatrix(final int rows, final int cols, final float... values) {
132                final float[][] A = new float[rows][cols];
133                if (values == null || values.length == 0) {
134                        return A;
135                } else if (values.length != rows * cols) {
136                        throw new IllegalArgumentException("wrong number of matrix values: "
137                                        + values.length + " instead of " + rows * cols);
138                }
139
140                for (int i = 0, r = 0; r < rows; r++) {
141                        for (int c = 0; c < cols; c++) {
142                                A[r][c] = values[i];
143                                i++;
144                        }
145                }
146                return A;
147        }
148
149        /**
150         * <p>
151         * Creates and returns a {@link RealMatrix} containing the specified {@code double} values. Calls
152         * {@link #makeDoubleMatrix(int, int, double...)}. Example for creating a 2x3 matrix:
153         * </p>
154         * <pre>
155         * RealMatrix A = makeRealMatrix(2, 3,
156         *              1.0, 2.0, 3.0,
157         *              4.0, 5.0, 6.0 );</pre>
158         * <p>
159         * See also {@link #flatten(RealMatrix)}.
160         * </p>
161         *
162         * @param rows the number of matrix rows
163         * @param cols the number of matrix columns
164         * @param values a sequence of matrix values in row-major order (may also be passed as a {@code double[]})
165         * @return a {@link RealMatrix}
166         */
167        public static RealMatrix makeRealMatrix(final int rows, final int cols, final double... values) {
168                return MatrixUtils.createRealMatrix(makeDoubleMatrix(rows, cols, values));
169        }
170
171
172        /**
173         * Returns the values of the specified matrix as a {@code double[]} with elements arranged in row-major order. The
174         * matrix must be fully rectangular (all rows of same length). See also
175         * {@link #makeDoubleMatrix(int, int, double...)}.
176         *
177         * @param A a matrix
178         * @return a {@code double[]} with the matrix elements
179         */
180        public static double[] flatten(double[][] A) {
181                final int rows = A.length;
182                final int cols = A[0].length;
183                final double[] vals = new double[rows * cols];
184                int i = 0;
185                for (int r = 0; r < rows; r++) {
186                        for (int c = 0; c < cols; c++) {
187                                vals[i] = A[r][c];
188                                i++;
189                        }
190                }
191                return vals;
192        }
193
194        /**
195         * Returns the values of the specified matrix as a {@code float[]} with elements arranged in row-major order. The
196         * matrix must be fully rectangular (all rows of same length). See also
197         * {@link #makeFloatMatrix(int, int, float...)}.
198         *
199         * @param A a matrix
200         * @return a {@code float[]} with the matrix elements
201         */
202        public static float[] flatten(float[][] A) {
203                final int rows = A.length;
204                final int cols = A[0].length;
205                final float[] vals = new float[rows * cols];
206                int i = 0;
207                for (int r = 0; r < rows; r++) {
208                        for (int c = 0; c < cols; c++) {
209                                vals[i] = A[r][c];
210                                i++;
211                        }
212                }
213                return vals;
214        }
215
216        /**
217         * Returns the values of the specified matrix as a {@code double[]} with elements arranged in row-major order. See
218         * also {@link #makeRealMatrix(int, int, double...)}.
219         *
220         * @param A a matrix
221         * @return a {@code double[]} with the matrix elements
222         */
223        public static double[] flatten(RealMatrix A) {
224                return flatten(A.getData());
225        }
226
227        // --------------------------------------------------------------------------
228
229        /**
230         * Creates and returns a {@code double[]} vector from the specified values.
231         *
232         * @param values a sequence of vector values (may also be passed as a single {@code double[]})
233         * @return a {@code double[]}
234         */
235        public static double[] makeDoubleVector(double... values) {
236                return values;
237        }
238
239        /**
240         * Creates and returns a {@code float[]} vector from the specified values.
241         *
242         * @param values a sequence of vector values (may also be passed as a single {@code float[]})
243         * @return a {@code float[]}
244         */
245        public static float[] makeFloatVector(float... values) {
246                return values;
247        }
248
249        /**
250         * Creates and returns a {@link RealVector} from the specified {@code double} values.
251         *
252         * @param values a sequence of vector values (may also be passed as a single {@code double[]})
253         * @return a {@link RealVector}
254         */
255        public static RealVector makeRealVector(double... values) {
256                return MatrixUtils.createRealVector(values);
257//              return new ArrayRealVector(values);
258        }
259
260        // Specific vector/matrix creation:
261
262        /**
263         * Creates and returns a new zero-valued {@code double[]} vector of the specified length. Throws an exception if the
264         * length is less than 1.
265         *
266         * @param length the length of the vector
267         * @return a {@code double[]} with zero values
268         */
269        public static double[] zeroVector(int length) {
270                if (length < 1)
271                        throw new IllegalArgumentException("vector size cannot be < 1");
272                return new double[length];
273        }
274
275        /**
276         * Creates and returns a new identity matrix of the specified size. Throws an exception if the size is less than 1.
277         *
278         * @param size the size of the matrix
279         * @return an identity matrix
280         */
281        public static double[][] idMatrix(int size) {
282                if (size < 1)
283                        throw new IllegalArgumentException("matrix size cannot be < 1");
284                double[][] A = new double[size][size];
285                for (int i = 0; i < size; i++) {
286                        A[i][i] = 1;
287                }
288                return A;
289        }
290
291        // Matrix properties -------------------------------------
292
293        /**
294         * Returns the number of rows of the specified {@code double} matrix.
295         *
296         * @param A a {@code double[][]} matrix
297         * @return the number of rows
298         */
299        public static int getNumberOfRows(double[][] A) {
300                return A.length;
301        }
302
303
304        /**
305         * Returns the number of columns of the specified {@code double} matrix.
306         *
307         * @param A a {@code double[][]} matrix
308         * @return the number of columns
309         */
310        public static int getNumberOfColumns(double[][] A) {
311                return A[0].length;
312        }
313
314        /**
315         * Returns the number of rows of the specified {@code float} matrix.
316         *
317         * @param A a {@code float[][]} matrix
318         * @return the number of rows
319         */
320        public static int getNumberOfRows(float[][] A) {
321                return A.length;
322        }
323
324        /**
325         * Returns the number of columns of the specified {@code float} matrix.
326         *
327         * @param A a {@code float[][]} matrix
328         * @return the number of columns
329         */
330        public static int getNumberOfColumns(float[][] A) {
331                return A[0].length;
332        }
333
334        /**
335         * Returns the number of rows of the specified {@link RealMatrix}.
336         *
337         * @param A a {@link RealMatrix}
338         * @return the number of rows
339         */
340        public static int getNumberOfRows(RealMatrix A) {
341                return A.getRowDimension();
342        }
343
344        /**
345         * Returns the number of columns of the specified {@link RealMatrix}.
346         *
347         * @param A a {@link RealMatrix}
348         * @return the number of columns
349         */
350        public static int getNumberOfColumns(RealMatrix A) {
351                return A.getColumnDimension();
352        }
353
354        // Extract rows or columns
355
356        /**
357         * Returns a particular row of the specified {@code double} matrix as a {@code double} vector.
358         *
359         * @param A a {@code double[][]} matrix
360         * @param r the row index (starting with 0)
361         * @return a {@code double} vector
362         */
363        public static double[] getRow(double[][] A, int r) {
364                return A[r].clone();
365        }
366
367        /**
368         * Returns a particular row of the specified {@code float} matrix as a {@code float} vector.
369         *
370         * @param A a {@code float[][]} matrix
371         * @param r the row index (starting with 0)
372         * @return a {@code float} vector
373         */
374        public static float[] getRow(float[][] A, int r) {
375                return A[r].clone();
376        }
377
378        /**
379         * Returns a particular column of the specified {@code double} matrix as a {@code double} vector.
380         *
381         * @param A a {@code double[][]} matrix
382         * @param c the column index (starting with 0)
383         * @return a {@code double} vector
384         */
385        public static double[] getColumn(double[][] A, int c) {
386                final int rows = A.length;
387                double[] col = new double[rows];
388                for (int r = 0; r < rows; r++) {
389                        col[r] = A[r][c];
390                }
391                return col;
392        }
393
394        /**
395         * Returns a particular column of the specified {@code float} matrix as a {@code float} vector.
396         *
397         * @param A a {@code float[][]} matrix
398         * @param c the column index (starting with 0)
399         * @return a {@code float} vector
400         */
401        public static float[] getColumn(float[][] A, int c) {
402                final int rows = A.length;
403                float[] col = new float[rows];
404                for (int r = 0; r < rows; r++) {
405                        col[r] = A[r][c];
406                }
407                return col;
408        }
409
410        // Checking vector/matrix dimensions
411
412        /**
413         * Checks if all rows of the given matrix have the same length.
414         *
415         * @param A a {@code float[][]} matrix
416         * @return true iff the matrix is rectangular
417         */
418        public static boolean isRectangular(float[][] A) {
419                final int nCols = A[0].length;
420                for (int i = 1; i < A.length; i++) {
421                        if (A[i].length != nCols) {
422                                return false;
423                        }
424                }
425                return true;
426        }
427
428        /**
429         * Checks if all rows of the given matrix have the same length.
430         *
431         * @param A a {@code double[][]} matrix
432         * @return true iff the matrix is rectangular
433         */
434        public static boolean isRectangular(double[][] A) {
435                final int nCols = A[0].length;
436                for (int i = 1; i < A.length; i++) {
437                        if (A[i].length != nCols) {
438                                return false;
439                        }
440                }
441                return true;
442        }
443
444        /**
445         * Checks it the given matrix has the same number of rows and columns.
446         *
447         * @param A a {@code double[][]} matrix
448         * @return true iff the matrix is square
449         */
450        public static boolean isSquare(double[][] A) {
451                return A.length > 0 && A.length == A[0].length;
452        }
453
454        /**
455         * Checks it the given matrix has the same number of rows and columns.
456         *
457         * @param A a {@code float[][]} matrix
458         * @return true iff the matrix is square
459         */
460        public static boolean isSquare(float[][] A) {
461                return A.length > 0 && A.length == A[0].length;
462        }
463
464        /**
465         * Returns a vector with the diagonal elements of the specified matrix.
466         *
467         * @param A a square {@code double[][]} matrix
468         * @return the vector of diagonal elements
469         */
470        public static double[] getDiagonal(double[][] A) {
471                if (!isSquare(A)) {
472                        throw new NonsquareMatrixException();
473                }
474                final int n = A.length;
475                double[] diag = new double[n];
476                for (int i = 0; i < n; i++) {
477                        diag[i] = A[i][i];
478                }
479                return diag;
480        }
481
482        /**
483         * Returns a vector with the diagonal elements of the specified matrix.
484         *
485         * @param A a square {@code float[][]} matrix
486         * @return the vector of diagonal elements
487         */
488        public static float[] getDiagonal(float[][] A) {
489                if (!isSquare(A)) {
490                        throw new NonsquareMatrixException();
491                }
492                final int n = A.length;
493                float[] diag = new float[n];
494                for (int i = 0; i < n; i++) {
495                        diag[i] = A[i][i];
496                }
497                return diag;
498        }
499
500        /**
501         * Returns a vector with the diagonal elements of the specified matrix.
502         *
503         * @param A a square {@link RealMatrix}
504         * @return the {@link RealVector} of diagonal elements
505         */
506        public static RealVector getDiagonal(RealMatrix A) {
507                return MatrixUtils.createRealVector(getDiagonal(A.getData()));
508        }
509
510        /**
511         * Creates and returns a diagonal matrix from the specified vector. See also {@link #getDiagonal(double[][])}.
512         *
513         * @param d vector of diagonal matrix elements
514         * @return a diagonal matrix
515         */
516        public double[][] diagMatrix(double[] d) {
517                return MatrixUtils.createRealDiagonalMatrix(d).getData();
518        }
519
520        /**
521         * Checks is the given square {@code double[][]} matrix is non-singular.
522         *
523         * @param A a square {@code double[][]} matrix
524         * @return true if the matrix is singular
525         * @throws NonsquareMatrixException if the matrix is not square
526         */
527        public static boolean isSingular(double[][] A) throws NonsquareMatrixException {
528                if (!Matrix.isSquare(A)) {
529                        throw new NonsquareMatrixException();
530                }
531                return isSingular(new Array2DRowRealMatrix(A));
532        }
533
534        /**
535         * Checks is the given square matrix is non-singular.
536         *
537         * @param A a square {@link RealMatrix}
538         * @return true if the matrix is singular
539         * @throws NonsquareMatrixException if the matrix is not square
540         */
541        public static boolean isSingular(RealMatrix A) throws NonsquareMatrixException {
542                if (!A.isSquare()) {
543                        throw new NonsquareMatrixException();
544                }
545                DecompositionSolver solver = new LUDecomposition(A).getSolver();
546                return !solver.isNonSingular();
547        }
548
549        /**
550         * Default matrix symmetry tolerance.
551         */
552        public static final double DefaultSymmetryTolerance = 1e-12;
553
554        /**
555         * Checks is the given square matrix is symmetric using the specified relative tolerance.
556         *
557         * @param A a square matrix
558         * @param relTolerance relative symmetry tolerance
559         * @return true if the matrix is symmetric
560         */
561        public static boolean isSymmetric(RealMatrix A, double relTolerance) {
562                return MatrixUtils.isSymmetric(A, relTolerance);
563        }
564
565        /**
566         * Checks is the given square matrix is symmetric, using the default tolerance value
567         * ({@link Arithmetic#EPSILON_DOUBLE}).
568         *
569         * @param A a square matrix
570         * @return true if the matrix is symmetric
571         */
572        public static boolean isSymmetric(RealMatrix A) {
573                return isSymmetric(A, DefaultSymmetryTolerance);
574        }
575
576        /**
577         * Checks is the given square matrix is symmetric using the specified relative tolerance.
578         *
579         * @param A a square matrix
580         * @param relTolerance relative symmetry tolerance
581         * @return true if the matrix is symmetric
582         */
583        public static boolean isSymmetric(double[][] A, double relTolerance) {
584                return MatrixUtils.isSymmetric(MatrixUtils.createRealMatrix(A), relTolerance);
585        }
586
587        /**
588         * Checks is the given square matrix is symmetric, using the default tolerance value
589         * ({@link Arithmetic#EPSILON_DOUBLE}).
590         *
591         * @param A a square matrix
592         * @return true if the matrix is symmetric
593         */
594        public static boolean isSymmetric(double[][] A) {
595                return isSymmetric(A, DefaultSymmetryTolerance);
596        }
597
598        /**
599         * Checks is the given square matrix is positive definite, using the specified symmetry tolerance value.
600         *
601         * @param A a square matrix
602         * @param tolerance the absolute positivity and relative symmetry tolerance
603         * @return true if the matrix is positive definite
604         */
605        public static boolean isPositiveDefinite(RealMatrix A, double tolerance) { // TODO: split tolerance in two parameters
606                try {
607                        new CholeskyDecomposition(A, tolerance, tolerance);
608                        return true;
609                } catch (NonPositiveDefiniteMatrixException e) {
610                        return false;
611                }
612        }
613
614        /**
615         * Checks is the given square matrix is positive definite.
616         *
617         * @param A a square matrix
618         * @return true if the matrix is positive definite
619         */
620        public static boolean isPositiveDefinite(RealMatrix A) {
621                return isPositiveDefinite(A, Arithmetic.EPSILON_DOUBLE);
622        }
623
624        /**
625         * Checks if the given vectors have the same length.
626         *
627         * @param a first vector
628         * @param b second vector
629         * @return true iff both vectors have the same length
630         */
631        public static boolean sameSize(double[] a, double[] b) {
632                return a.length == b.length;
633        }
634
635        /**
636         * Checks if the given vectors have the same length.
637         *
638         * @param a first vector
639         * @param b second vector
640         * @return true iff both vectors have the same length
641         */
642        public static boolean sameSize(float[] a, float[] b) {
643                return a.length == b.length;
644        }
645
646        /**
647         * Checks if the given matrices have the same size.
648         *
649         * @param A first matrix
650         * @param B second matrix
651         * @return true iff both matrices have the same size
652         */
653        public static boolean sameSize(double[][] A, double[][] B) {
654                return (A.length == B.length) && (A[0].length == B[0].length);
655        }
656
657        /**
658         * Checks if the given matrices have the same size.
659         *
660         * @param A first matrix
661         * @param B second matrix
662         * @return true iff both matrices have the same size
663         */
664        public static boolean sameSize(float[][] A, float[][] B) {
665                return (A.length == B.length) && (A[0].length == B[0].length);
666        }
667
668        // Matrix and vector duplication ------------------------------
669
670        /**
671         * Returns a copy of the given {@code double[]} vector.
672         *
673         * @param a a {@code double[]} vector
674         * @return a copy of the vector
675         */
676        public static double[] duplicate(final double[] a) {
677                return a.clone();
678        }
679
680        /**
681         * Returns a copy of the given {@code float[]} vector.
682         *
683         * @param a a {@code float[]} vector
684         * @return a copy of the vector
685         */
686        public static float[] duplicate(final float[] a) {
687                return a.clone();
688        }
689
690        /**
691         * Returns a copy of the given {@code double[][]} matrix.
692         *
693         * @param A a {@code double[][]} matrix
694         * @return a copy of the matrix
695         */
696        public static double[][] duplicate(final double[][] A) {
697                final int m = A.length;
698                final double[][] B = new double[m][];
699                for (int i = 0; i < m; i++) {
700                        B[i] = A[i].clone();
701                }
702                return B;
703        }
704
705        /**
706         * Returns a copy of the given {@code float[][]} matrix.
707         *
708         * @param A a {@code float[][]} matrix
709         * @return a copy of the matrix
710         */
711        public static float[][] duplicate(final float[][] A) {
712                final int m = A.length;
713                float[][] B = new float[m][];
714                for (int i = 0; i < m; i++) {
715                        B[i] = A[i].clone();
716                }
717                return B;
718        }
719
720        // vector copying ------------------------------
721
722        /**
723         * Copy data from one {@code float[]} vector to another. The two vectors must have the same length (not checked).
724         *
725         * @param source the source vector (unmodified)
726         * @param target the target vector (modified)
727         */
728        public static void copyD(float[] source, float[] target) {
729                System.arraycopy(source, 0, target, 0, source.length);
730        }
731
732        /**
733         * Copy data from one {@code double[]} vector to another. The two vectors must have the same length (not checked).
734         *
735         * @param source the source vector (unmodified)
736         * @param target the target vector (modified)
737         */
738        public static void copyD(double[] source, double[] target) {
739                System.arraycopy(source, 0, target, 0, source.length);
740        }
741
742        // ----- double <-> float conversions -----------------
743
744        /**
745         * Converts a {@code double[]} to a {@code float[]}.
746         *
747         * @param a the original {@code double[]} array
748         * @return a copy of the array of type {@code float[]}
749         */
750        public static float[] toFloat(final double[] a) {
751                final int m = a.length;
752                final float[] b = new float[m];
753                for (int i = 0; i < m; i++) {
754                        b[i] = (float) a[i];
755                }
756                return b;
757        }
758
759        /**
760         * Converts a {@code double[][]} to a {@code float[][]}.
761         *
762         * @param A the original {@code double[][]} array
763         * @return a copy of the array of type {@code float[][]}
764         */
765        public static float[][] toFloat(final double[][] A) {
766                final int m = A.length;
767                final int n = A[0].length;
768                final float[][] B = new float[m][n];
769                for (int i = 0; i < m; i++) {
770                        for (int j = 0; j < n; j++) {
771                                B[i][j] = (float) A[i][j];
772                        }
773                }
774                return B;
775        }
776
777        /**
778         * Converts a {@code double[][]} to a {@code long[][]} whose elements contain the 64-bit representation of the
779         * original {@code double} values. Its printed representation is comparatively compact (see
780         * {@link #toString(long[][])}). This is useful for defining literal {@code double} arrays without losing any
781         * precision (by avoiding conversion to decimal representation). Note that the {@code long} are bit representations
782         * and cannot be used to perform any arithmetic calculations.
783         *
784         * @param A the original {@code double} array
785         * @return a copy of the array of type {@code float[][]}
786         * @see #fromLongBits(long[][])
787         * @see #toString(long[][])
788         * @see #printToStream(long[][], PrintStream)
789         */
790        public static long[][] toLongBits(final double[][] A) {
791                final int m = A.length;
792                final int n = A[0].length;
793                final long[][] B = new long[m][n];
794                for (int i = 0; i < m; i++) {
795                        for (int j = 0; j < n; j++) {
796                                B[i][j] = Double.doubleToLongBits(A[i][j]);
797                        }
798                }
799                return B;
800        }
801
802        /**
803         * Converts a {@code long[][]} with 64-bit {@code double} representations to the equivalent {@code double[][]}. This
804         * is useful for defining literal {@code double} arrays without losing any precision (by avoiding conversion to
805         * decimal representation).
806         *
807         * @param A a {@code long} array
808         * @return the equivalent {@code double} array
809         * @see #toLongBits(double[][])
810         */
811        public static double[][] fromLongBits(final long[][] A) {
812                final int m = A.length;
813                final int n = A[0].length;
814                final double[][] B = new double[m][n];
815                for (int i = 0; i < m; i++) {
816                        for (int j = 0; j < n; j++) {
817                                B[i][j] = Double.longBitsToDouble(A[i][j]);
818                        }
819                }
820                return B;
821        }
822
823        /**
824         * Converts a {@code float[]} to a {@code double[]}.
825         *
826         * @param a the original {@code float[]} array
827         * @return a copy of the array of type {@code double[]}
828         */
829        public static double[] toDouble(final float[] a) {
830                final int m = a.length;
831                final double[] B = new double[m];
832                for (int i = 0; i < m; i++) {
833                        B[i] = a[i];
834                }
835                return B;
836        }
837
838        /**
839         * Converts a {@code float[][]} to a {@code double[][]}.
840         *
841         * @param A the original {@code float[][]} array
842         * @return a copy of the array of type {@code double[][]}
843         */
844        public static double[][] toDouble(final float[][] A) {
845                final int m = A.length;
846                final int n = A[0].length;
847                final double[][] B = new double[m][n];
848                for (int i = 0; i < m; i++) {
849                        for (int j = 0; j < n; j++) {
850                                B[i][j] = A[i][j];
851                        }
852                }
853                return B;
854        }
855
856        // ----------- fill operations (destructive) ------------------------
857
858        /**
859         * Fills the given {@code double} vector with the specified value (destructively).
860         *
861         * @param x a vector (which is modified)
862         * @param val the fill value
863         */
864        public static void fillD(final double[] x, double val) {
865                Arrays.fill(x, val);
866        }
867
868        /**
869         * Fills the given {@code float} vector with the specified value (destructively).
870         *
871         * @param x a vector (which is modified)
872         * @param val the fill value
873         */
874        public static void fillD(final float[] x, float val) {
875                Arrays.fill(x, val);
876        }
877
878        /**
879         * Fills the given {@code double} matrix with the specified value (destructively).
880         *
881         * @param A a matrix (which is modified)
882         * @param val the fill value
883         */
884        public static void fillD(final double[][] A, double val) {
885                for (int i = 0; i < A.length; i++) {
886                        Arrays.fill(A[i], val);
887                }
888        }
889
890        /**
891         * Fills the given {@code float} matrix with the specified value (destructively).
892         *
893         * @param A a matrix (which is modified)
894         * @param val the fill value
895         */
896        public static void fillD(final float[][] A, float val) {
897                for (int i = 0; i < A.length; i++) {
898                        Arrays.fill(A[i], val);
899                }
900        }
901
902
903        // Element-wise arithmetic -------------------------------
904
905        /**
906         * Calculates and returns the sum of the specified {@code double} vectors (non-destructively). An exception is
907         * thrown if the vectors are of different lengths. None of the arguments is modified.
908         *
909         * @param a the first vector
910         * @param b the second vector
911         * @return a new {@code double} vector
912         */
913        public static double[] add(final double[] a, final double[] b) {
914                double[] c = b.clone();
915                addD(a, c);
916                return c;
917        }
918
919        /**
920         * Adds the elements of the first {@code double} vector to the second vector (destructively). An exception is thrown
921         * if the vectors are of different lengths. The second vector is modified.
922         *
923         * @param a the first vector
924         * @param b the second vector
925         */
926        public static void addD(final double[] a, final double[] b) {
927                if (!sameSize(a, b))
928                        throw new IncompatibleDimensionsException();
929                for (int i = 0; i < a.length; i++) {
930                        b[i] = a[i] + b[i];
931                }
932        }
933
934        /**
935         * Calculates and returns the sum of the specified {@code float} vectors (non-destructively). An exception is thrown
936         * if the vectors are of different lengths. None of the arguments is modified.
937         *
938         * @param a the first vector
939         * @param b the second vector
940         * @return a new {@code float} vector
941         */
942        public static float[] add(final float[] a, final float[] b) {
943                float[] c = b.clone();
944                addD(a, c);
945                return c;
946        }
947
948        /**
949         * Adds the elements of the first {@code float} vector to the second vector (destructively). An exception is thrown
950         * if the vectors are of different lengths. The second vector is modified.
951         *
952         * @param a the first vector
953         * @param b the second vector
954         */
955        public static void addD(final float[] a, final float[] b) {
956                if (!sameSize(a, b))
957                        throw new IncompatibleDimensionsException();
958                for (int i = 0; i < a.length; i++) {
959                        b[i] = a[i] + b[i];
960                }
961        }
962
963        /**
964         * Calculates and returns the sum of the specified {@code double} matrix (non-destructively). An exception is thrown
965         * if the matrices are of different size. None of the arguments is modified.
966         *
967         * @param A the first matrix
968         * @param B the second matrix
969         * @return a new {@code double} matrix
970         */
971        public static double[][] add(final double[][] A, final double[][] B) {
972                double[][] C = duplicate(B);
973                addD(A, C);
974                return C;
975        }
976
977        /**
978         * Adds the elements of the first {@code double} matrix to the second vector (destructively). An exception is thrown
979         * if the matrices are of different size. The second matrix is modified.
980         *
981         * @param A the first matrix
982         * @param B the second matrix
983         */
984        public static void addD(final double[][] A, final double[][] B) {
985                if (!sameSize(A, B))
986                        throw new IncompatibleDimensionsException();
987                for (int i = 0; i < A.length; i++) {
988                        for (int j = 0; j < A[i].length; j++) {
989                                B[i][j] = A[i][j] + B[i][j];
990                        }
991                }
992        }
993
994        /**
995         * Calculates and returns the sum of the specified {@code float} matrix (non-destructively). An exception is thrown
996         * if the matrices are of different size. None of the arguments is modified.
997         *
998         * @param A the first matrix
999         * @param B the second matrix
1000         * @return a new {@code float} matrix
1001         */
1002        public static float[][] add(final float[][] A, final float[][] B) {
1003                float[][] C = duplicate(B);
1004                addD(A, C);
1005                return C;
1006        }
1007
1008        /**
1009         * Adds the elements of the first {@code float} matrix to the second vector (destructively). An exception is thrown
1010         * if the matrices are of different size. The second matrix is modified.
1011         *
1012         * @param A the first matrix
1013         * @param B the second matrix
1014         */
1015        public static void addD(final float[][] A, final float[][] B) {
1016                if (!sameSize(A, B))
1017                        throw new IncompatibleDimensionsException();
1018                for (int i = 0; i < A.length; i++) {
1019                        for (int j = 0; j < A[i].length; j++) {
1020                                B[i][j] = A[i][j] + B[i][j];
1021                        }
1022                }
1023        }
1024
1025        // ------------------------------------------------
1026
1027        /**
1028         * Calculates and returns the difference (a - b) of the specified {@code double} vectors (non-destructively). An
1029         * exception is thrown if the vectors are of different lengths. None of the arguments is modified.
1030         *
1031         * @param a the first vector
1032         * @param b the second vector
1033         * @return a new {@code double} vector
1034         */
1035        public static double[] subtract(final double[] a, final double[] b) {
1036                if (!sameSize(a, b))
1037                        throw new IncompatibleDimensionsException();
1038                final int n = a.length;
1039                double[] c = new double[n];
1040                for (int i = 0; i < n; i++) {
1041                        c[i] = a[i] - b[i];
1042                }
1043                return c;
1044        }
1045
1046        // non-destructive a - b
1047
1048        /**
1049         * Calculates and returns the difference (a - b) of the specified {@code float} vectors (non-destructively). An
1050         * exception is thrown if the vectors are of different lengths. None of the arguments is modified.
1051         *
1052         * @param a the first vector
1053         * @param b the second vector
1054         * @return a new {@code float} vector
1055         */
1056        public static float[] subtract(final float[] a, final float[] b) {
1057                if (!sameSize(a, b))
1058                        throw new IncompatibleDimensionsException();
1059                final int n = a.length;
1060                float[] c = new float[n];
1061                for (int i = 0; i < n; i++) {
1062                        c[i] = a[i] - b[i];
1063                }
1064                return c;
1065        }
1066
1067        // Scalar multiplications -------------------------------
1068
1069        // non-destructive
1070
1071        /**
1072         * Multiplies a {@code double[]} vector by a scalar and returns a new {@code double[]} vector (non-destructive).
1073         *
1074         * @param s a scalar
1075         * @param x a vector
1076         * @return a new vector
1077         */
1078        public static double[] multiply(final double s, final double[] x) {
1079                double[] b = x.clone();
1080                multiplyD(s, b);
1081                return b;
1082        }
1083
1084        // destructive
1085
1086        /**
1087         * Multiplies a {@code double[]} vector by a scalar. Destructive, i.e., the specified vector is modified.
1088         *
1089         * @param s a scalar
1090         * @param x a vector
1091         */
1092        public static void multiplyD(final double s, final double[] x) {
1093                for (int i = 0; i < x.length; i++) {
1094                        x[i] = x[i] * s;
1095                }
1096        }
1097
1098        // non-destructive
1099
1100        /**
1101         * Multiplies a {@code double[][]} matrix by a scalar and returns a new {@code double[][]} matrix
1102         * (non-destructive).
1103         *
1104         * @param s a scalar
1105         * @param A a matrix
1106         * @return a new matrix
1107         */
1108        public static double[][] multiply(final double s, final double[][] A) {
1109                double[][] B = duplicate(A);
1110                multiplyD(s, B);
1111                return B;
1112        }
1113
1114        /**
1115         * Multiplies a {@code double[][]} matrix by a scalar. Destructive, i.e., the specified matrix is modified.
1116         *
1117         * @param s a scalar
1118         * @param A a matrix
1119         */
1120        public static void multiplyD(final double s, final double[][] A) {
1121                for (int i = 0; i < A.length; i++) {
1122                        for (int j = 0; j < A[i].length; j++) {
1123                                A[i][j] = A[i][j] * s;
1124                        }
1125                }
1126        }
1127
1128        // non-destructive
1129
1130        /**
1131         * Multiplies a {@code float[]} vector by a scalar and returns a new {@code float[]} vector (non-destructive).
1132         *
1133         * @param s a scalar
1134         * @param x a vector
1135         * @return a new vector
1136         */
1137        public static float[] multiply(final float s, final float[] x) {
1138                float[] B = duplicate(x);
1139                multiplyD(s, B);
1140                return B;
1141        }
1142
1143        // destructive
1144
1145        /**
1146         * Multiplies a {@code float[]} vector by a scalar. Destructive, i.e., the specified vector is modified.
1147         *
1148         * @param s a scalar
1149         * @param x a matrix
1150         */
1151        public static void multiplyD(final float s, final float[] x) {
1152                for (int i = 0; i < x.length; i++) {
1153                        x[i] = x[i] * s;
1154                }
1155        }
1156
1157        // non-destructive
1158
1159        /**
1160         * Multiplies a {@code float[][]} matrix by a scalar and returns a new {@code float[][]} matrix (non-destructive).
1161         *
1162         * @param s a scalar
1163         * @param A a matrix
1164         * @return a new matrix
1165         */
1166        public static float[][] multiply(final float s, final float[][] A) {
1167                float[][] B = duplicate(A);
1168                multiplyD(s, B);
1169                return B;
1170        }
1171
1172        // destructive
1173
1174        /**
1175         * Multiplies a {@code float[][]} matrix by a scalar. Destructive, i.e., the specified matrix is modified.
1176         *
1177         * @param s a scalar
1178         * @param A a matrix
1179         */
1180        public static void multiplyD(final float s, final float[][] A) {
1181                for (int i = 0; i < A.length; i++) {
1182                        for (int j = 0; j < A[i].length; j++) {
1183                                A[i][j] = A[i][j] * s;
1184                        }
1185                }
1186        }
1187
1188        // matrix-vector multiplications ----------------------------------------
1189
1190        /**
1191         * Multiplies a vector x with a matrix A "from the left", i.e., y = x * A, where x is treated as a row vector and
1192         * the result y is also a row vector.
1193         *
1194         * @param x a (row) vector of length m
1195         * @param A a matrix of size (m,n)
1196         * @return a (row) vector of length n
1197         */
1198        public static double[] multiply(final double[] x, final double[][] A) {
1199                double[] y = new double[getNumberOfColumns(A)];
1200                multiplyD(x, A, y);
1201                return y;
1202        }
1203
1204        /**
1205         * Destructive version of {@link #multiply(double[], double[][])}.
1206         *
1207         * @param x a (row) vector of length m
1208         * @param A matrix of size (m,n)
1209         * @param y a (row) vector of length n
1210         */
1211        public static void multiplyD(final double[] x, final double[][] A, double[] y) {
1212                if (x == y)
1213                        throw new SameSourceTargetException();
1214                final int m = getNumberOfRows(A);
1215                final int n = getNumberOfColumns(A);
1216                if (x.length != m || y.length != n)
1217                        throw new IncompatibleDimensionsException();
1218                for (int i = 0; i < n; i++) {
1219                        double s = 0;
1220                        for (int j = 0; j < m; j++) {
1221                                s = s + x[j] * A[j][i];
1222                        }
1223                        y[i] = s;
1224                }
1225        }
1226
1227        /**
1228         * Multiplies a matrix A with a vector x "from the right", i.e., y = A * x, where x is treated as a column vector
1229         * and the result y is also a column vector.
1230         *
1231         * @param x a (column) vector of length n
1232         * @param A a matrix of size (m,n)
1233         * @return a (column) vector of length m
1234         */
1235        public static double[] multiply(final double[][] A, final double[] x) {
1236                double[] y = new double[getNumberOfRows(A)];
1237                multiplyD(A, x, y);
1238                return y;
1239        }
1240
1241        /**
1242         * Multiplies a matrix A with a vector x "from the right", i.e., y = A * x, where x is treated as a column vector
1243         * and the result y is also a column vector. The result is placed in the vector passed as the last argument, which
1244         * is modified. Destructive version of {@link #multiply(double[][], double[])}. An exception is thrown if any matrix
1245         * or vector dimensions do not match or if the two vectors are the same.
1246         *
1247         * @param A matrix of size (m,n)
1248         * @param x a (column) vector of length n
1249         * @param y a (column) vector of length m
1250         */
1251        public static void multiplyD(final double[][] A, final double[] x, double[] y) {
1252                if (x == y)
1253                        throw new SameSourceTargetException();
1254                final int m = getNumberOfRows(A);
1255                final int n = getNumberOfColumns(A);
1256                if (x.length != n || y.length != m)
1257                        throw new IncompatibleDimensionsException();
1258                for (int i = 0; i < m; i++) {
1259                        double s = 0;
1260                        for (int j = 0; j < n; j++) {
1261                                s = s + A[i][j] * x[j];
1262                        }
1263                        y[i] = s;
1264                }
1265        }
1266
1267        /**
1268         * Multiplies a matrix A with a vector x from the right, i.e., y = A * x, where x is treated as a column vector and
1269         * the result y is also a column vector.
1270         *
1271         * @param x a (column) vector of length n
1272         * @param A a matrix of size (m,n)
1273         * @return a (column) vector of length m
1274         */
1275        public static float[] multiply(final float[][] A, final float[] x) {
1276                float[] y = new float[getNumberOfRows(A)];
1277                multiplyD(A, x, y);
1278                return y;
1279        }
1280
1281        /**
1282         * Multiplies a matrix A with a vector x "from the right", i.e., y = A * x, where x is treated as a column vector
1283         * and the result y is also a column vector. The result is placed in the vector passed as the last argument, which
1284         * is modified. Destructive version of {@link #multiply(float[][], float[])}. An exception is thrown if any matrix
1285         * or vector dimensions do not match or if the two vectors are the same.
1286         *
1287         * @param A matrix of size (m,n)
1288         * @param x a (column) vector of length n
1289         * @param y a (column) vector of length m
1290         */
1291        public static void multiplyD(final float[][] A, final float[] x, float[] y) {
1292                if (x == y)
1293                        throw new SameSourceTargetException();
1294                final int m = getNumberOfRows(A);
1295                final int n = getNumberOfColumns(A);
1296                if (x.length != n || y.length != m)
1297                        throw new IncompatibleDimensionsException();
1298                for (int i = 0; i < m; i++) {
1299                        double s = 0;
1300                        for (int j = 0; j < n; j++) {
1301                                s = s + A[i][j] * x[j];
1302                        }
1303                        y[i] = (float) s;
1304                }
1305        }
1306
1307
1308        // Matrix-matrix products ---------------------------------------
1309
1310        // returns A * B (non-destructive)
1311
1312        /**
1313         * Returns the product of two {@code double[][]} matrices A, B as a new {@code double[][]} matrix. Non-destructive,
1314         * i.e., none of the arguments is modified.
1315         *
1316         * @param A first matrix
1317         * @param B second matrix
1318         * @return the matrix product A * B
1319         */
1320        public static double[][] multiply(final double[][] A, final double[][] B) {
1321                final int nA = getNumberOfColumns(A);
1322                final int mB = getNumberOfRows(B);
1323                if (nA != mB)
1324                        throw new IncompatibleDimensionsException();    // check size of A, B
1325                int ma = getNumberOfRows(A);
1326                int nb = getNumberOfColumns(B);
1327                double[][] C = makeDoubleMatrix(ma, nb);
1328                multiplyD(A, B, C);
1329                return C;
1330        }
1331
1332        // A * B -> C (destructive)
1333
1334        /**
1335         * Calculates the product of two {@code double[][]} matrices A, B and places the results in the third
1336         * {@code double[][]} matrix C, which is modified (destructively). An exception is thrown if any matrix dimensions
1337         * do not match or if the target matrix is the same as one of the source matrices.
1338         *
1339         * @param A first matrix
1340         * @param B second matrix
1341         * @param C the result matrix
1342         * @throws SameSourceTargetException if the target matrix is the same as one of the source matrices
1343         * @throws IncompatibleDimensionsException if any matrix dimensions do not match
1344         */
1345        public static void multiplyD(final double[][] A, final double[][] B, final double[][] C)
1346                        throws SameSourceTargetException, IncompatibleDimensionsException {
1347                if (A == C || B == C)
1348                        throw new SameSourceTargetException();
1349                final int mA = getNumberOfRows(A);
1350                final int nA = getNumberOfColumns(A);
1351                final int mB = getNumberOfRows(B);
1352                final int nB = getNumberOfColumns(B);
1353                if (nA != mB)
1354                        throw new IncompatibleDimensionsException();    // check size of A, B
1355                if (mA != getNumberOfRows(C) || nB != getNumberOfColumns(C))
1356                        throw new IncompatibleDimensionsException();    // check size of C
1357
1358                for (int i = 0; i < mA; i++) {
1359                        for (int j = 0; j < nB; j++) {
1360                                double s = 0;
1361                                for (int k = 0; k < nA; k++) {
1362                                        s = s + A[i][k] * B[k][j];
1363                                }
1364                                C[i][j] = s;
1365                        }
1366                }
1367        }
1368
1369        // returns A * B (non-destructive)
1370
1371        /**
1372         * Returns the product of two {@code float[][]} matrices A, B as a new {@code float[][]} matrix. Non-destructive,
1373         * i.e., none of the arguments is modified.
1374         *
1375         * @param A first matrix
1376         * @param B second matrix
1377         * @return the matrix product A * B
1378         */
1379        public static float[][] multiply(final float[][] A, final float[][] B) {
1380                final int nA = getNumberOfColumns(A);
1381                final int mB = getNumberOfRows(B);
1382                if (nA != mB)
1383                        throw new IncompatibleDimensionsException();    // check size of A, B
1384                final int mA = getNumberOfRows(A);
1385                final int nB = getNumberOfColumns(B);
1386                float[][] C = makeFloatMatrix(mA, nB);
1387                multiplyD(A, B, C);
1388                return C;
1389        }
1390
1391        // A * B -> C (destructive)
1392
1393        /**
1394         * Calculates the product of two {@code float[][]} matrices A, B and places the results in the third
1395         * {@code float[][]} matrix C, which is modified (destructively). An exception is thrown if any matrix dimensions do
1396         * not match or if the target matrix is the same as one of the source matrices.
1397         *
1398         * @param A first matrix
1399         * @param B second matrix
1400         * @param C the result matrix
1401         */
1402        public static void multiplyD(final float[][] A, final float[][] B, final float[][] C) {
1403                if (A == C || B == C)
1404                        throw new SameSourceTargetException();
1405                final int mA = getNumberOfRows(A);
1406                final int nA = getNumberOfColumns(A);
1407                final int mB = getNumberOfRows(B);
1408                final int nB = getNumberOfColumns(B);
1409                if (nA != mB)
1410                        throw new IncompatibleDimensionsException();    // check size of A,B
1411                if (mA != getNumberOfRows(C) || nB != getNumberOfColumns(C))
1412                        throw new IncompatibleDimensionsException();    // check size of C
1413                for (int i = 0; i < mA; i++) {
1414                        for (int j = 0; j < nB; j++) {
1415                                float s = 0;
1416                                for (int k = 0; k < nA; k++) {
1417                                        s = s + A[i][k] * B[k][j];
1418                                }
1419                                C[i][j] = s;
1420                        }
1421                }
1422        }
1423
1424        // Vector-vector products ---------------------------------------
1425
1426        /**
1427         * Calculates and returns the dot (inner or scalar) product of two vectors, which must have the same length. Throws
1428         * an exceptions if vector dimensions do not match.
1429         *
1430         * @param a first vector
1431         * @param b second vector
1432         * @return the dot product
1433         */
1434        public static double dotProduct(final double[] a, final double[] b) {
1435                if (!sameSize(a, b))
1436                        throw new IncompatibleDimensionsException();
1437                double sum = 0;
1438                for (int i = 0; i < a.length; i++) {
1439                        sum = sum + a[i] * b[i];
1440                }
1441                return sum;
1442        }
1443
1444        // a is considered a column vector, b is a row vector, of length m, n, resp.
1445        // returns a matrix M of size (m,n).
1446
1447        /**
1448         * Calculates and returns the outer product of two vectors, which is a matrix of size (m,n), where m is the length
1449         * of the first vector and m is the length of the second vector.
1450         *
1451         * @param a first (column) vector (of length m)
1452         * @param b second (row) vector (of length n)
1453         * @return the outer product (matrix)
1454         */
1455        public static double[][] outerProduct(final double[] a, final double[] b) {
1456                final int m = a.length;
1457                final int n = b.length;
1458                final double[][] M = new double[m][n];
1459                for (int i = 0; i < m; i++) {
1460                        for (int j = 0; j < n; j++) {
1461                                M[i][j] = a[i] * b[j];
1462                        }
1463                }
1464                return M;
1465        }
1466
1467        //  Vector norms ---------------------------------------------------
1468
1469        /**
1470         * Calculates and returns the L1 norm of the given vector.
1471         *
1472         * @param a a vector
1473         * @return the L1 norm of the vector
1474         */
1475        public static double normL1(final double[] a) {
1476                double sum = 0;
1477                for (double val : a) {
1478                        sum = sum + Math.abs(val);
1479                }
1480                return sum;
1481        }
1482
1483        /**
1484         * Calculates and returns the L1 norm of the given vector.
1485         *
1486         * @param a a vector
1487         * @return the L1 norm of the vector
1488         */
1489        public static float normL1(final float[] a) {
1490                double sum = 0;
1491                for (double val : a) {
1492                        sum = sum + Math.abs(val);
1493                }
1494                return (float) sum;
1495        }
1496
1497        /**
1498         * Calculates and returns the L2 norm of the given vector.
1499         *
1500         * @param a a vector
1501         * @return the L2 norm of the vector
1502         */
1503        public static double normL2(final double[] a) {
1504                return Math.sqrt(normL2squared(a));
1505        }
1506
1507        /**
1508         * Calculates and returns the squared L2 norm of the given vector. The squared norm is less costly to calculate (no
1509         * square root needed) than the L2 norm and is thus often used for efficiency.
1510         *
1511         * @param a a vector
1512         * @return the squared L2 norm of the vector
1513         */
1514        public static double normL2squared(final double[] a) {
1515                double sum = 0;
1516                for (double val : a) {
1517                        sum = sum + sqr(val);
1518                }
1519                return sum;
1520        }
1521
1522        /**
1523         * Calculates and returns the L2 norm of the given vector.
1524         *
1525         * @param x a vector
1526         * @return the L2 norm of the vector
1527         */
1528        public static float normL2(final float[] x) {
1529                return (float) Math.sqrt(normL2squared(x));
1530        }
1531
1532        /**
1533         * Calculates and returns the squared L2 norm of the given vector. The squared norm is less costly to calculate (no
1534         * square root needed) than the L2 norm and is thus often used for efficiency.
1535         *
1536         * @param a a vector
1537         * @return the squared L2 norm of the vector
1538         */
1539        public static double normL2squared(final float[] a) {
1540                double sum = 0;
1541                for (double val : a) {
1542                        sum = sum + sqr(val);
1543                }
1544                return sum;
1545        }
1546
1547        // Normalize vectors
1548
1549        /**
1550         * Normalizes the specified {@code double[]} vector to unit (L2) norm and returns the result as a new
1551         * {@code double[]} vector.
1552         *
1553         * @param a a vector
1554         * @return the normalized vector
1555         */
1556        public static double[] normalize(final double[] a) {
1557                double[] xx = duplicate(a);
1558                normalizeD(xx);
1559                return xx;
1560        }
1561
1562        /**
1563         * Normalizes the specified {@code double[]} vector to unit (L2) norm. The vector is modified (destructively).
1564         *
1565         * @param a a vector
1566         */
1567        public static void normalizeD(final double[] a) {
1568                double normx = normL2(a);
1569                if (Arithmetic.isZero(normx))
1570                        throw new IllegalArgumentException("cannot normalize zero-norm vector " + Matrix.toString(a));
1571                multiplyD(1.0 / normx, a);
1572        }
1573
1574        /**
1575         * Normalizes the specified {@code float[]} vector to unit (L2) norm and returns the result as a new {@code float[]}
1576         * vector.
1577         *
1578         * @param a a vector
1579         * @return the normalized vector
1580         */
1581        public static float[] normalize(final float[] a) {
1582                float[] xx = duplicate(a);
1583                normalizeD(xx);
1584                return xx;
1585        }
1586
1587        /**
1588         * Normalizes the specified {@code float[]} vector to unit (L2) norm. The vector is modified (destructively).
1589         *
1590         * @param a a vector
1591         */
1592        public static void normalizeD(final float[] a) {
1593                double normx = normL2(a);
1594                if (Arithmetic.isZero(normx))
1595                        throw new IllegalArgumentException("cannot normalize zero-norm vector");
1596                multiplyD((float) (1.0 / normx), a);
1597        }
1598
1599        // Distance between vectors ---------------------------------------
1600
1601        /**
1602         * Calculates the L2 distance between two vectors (points) in n-dimensional space. Both vectors must have the same
1603         * number of elements.
1604         *
1605         * @param a first vector
1606         * @param b second vector
1607         * @return the distance
1608         */
1609        public static double distL2(double[] a, double[] b) {
1610                return Math.sqrt(distL2squared(a, b));
1611        }
1612
1613        /**
1614         * Calculates the squared L2 distance between two vectors (points) in n-dimensional space. Both vectors must have
1615         * the same number of elements.
1616         *
1617         * @param a first vector
1618         * @param b second vector
1619         * @return the squared distance
1620         */
1621        public static double distL2squared(double[] a, double[] b) {
1622                double sum = 0;
1623                for (int i = 0; i < a.length; i++) {
1624                        sum = sum + sqr(a[i] - b[i]);
1625                }
1626                return sum;
1627        }
1628
1629        /**
1630         * Calculates the L2 distance between two vectors (points) in n-dimensional space. Both vectors must have the same
1631         * number of elements.
1632         *
1633         * @param a first vector
1634         * @param b second vector
1635         * @return the distance
1636         */
1637        public static float distL2(float[] a, float[] b) {
1638                return (float) Math.sqrt(distL2squared(a, b));
1639        }
1640
1641        /**
1642         * Calculates the squared L2 distance between two vectors (points) in n-dimensional space. Both vectors must have
1643         * the same number of elements.
1644         *
1645         * @param a first vector
1646         * @param b second vector
1647         * @return the squared distance
1648         */
1649        public static float distL2squared(float[] a, float[] b) {
1650                double sum = 0;
1651                for (int i = 0; i < a.length; i++) {
1652                        sum = sum + sqr(a[i] - b[i]);
1653                }
1654                return (float) sum;
1655        }
1656
1657        // Matrix (Froebenius) norm ---------------------------------------
1658
1659        /**
1660         * Calculates and returns the Froebenius norm of the given matrix.
1661         *
1662         * @param A a matrix
1663         * @return the norm of the matrix
1664         */
1665        public static double norm(final double[][] A) {
1666                final int m = getNumberOfRows(A);
1667                final int n = getNumberOfColumns(A);
1668                double s = 0;
1669                for (int i = 0; i < m; i++) {
1670                        for (int j = 0; j < n; j++) {
1671                                s = s + sqr(A[i][j]);
1672                        }
1673                }
1674                return Math.sqrt(s);
1675        }
1676
1677        // Summation --------------------------------------------------
1678
1679        /**
1680         * Calculates and returns the sum of the elements in the specified {@code double[]} vector.
1681         *
1682         * @param a a vector
1683         * @return the sum of vector elements
1684         */
1685        public static double sum(final double[] a) {
1686                double sum = 0;
1687                for (int i = 0; i < a.length; i++) {
1688                        sum = sum + a[i];
1689                }
1690                return sum;
1691        }
1692
1693        /**
1694         * Calculates and returns the sum of the elements in the specified {@code double[][]} matrix.
1695         *
1696         * @param A a matrix
1697         * @return the sum of matrix elements
1698         */
1699        public static double sum(final double[][] A) {
1700                double sum = 0;
1701                for (int i = 0; i < A.length; i++) {
1702                        for (int j = 0; j < A[i].length; j++) {
1703                                sum = sum + A[i][j];
1704                        }
1705                }
1706                return sum;
1707        }
1708
1709        /**
1710         * Calculates and returns the sum of the elements in the specified {@code float[]} vector.
1711         *
1712         * @param a a vector
1713         * @return the sum of vector elements
1714         */
1715        public static double sum(final float[] a) {
1716                double sum = 0;
1717                for (int i = 0; i < a.length; i++) {
1718                        sum = sum + a[i];
1719                }
1720                return sum;
1721        }
1722
1723        /**
1724         * Calculates and returns the sum of the elements in the specified {@code float[][]} matrix.
1725         *
1726         * @param A a matrix
1727         * @return the sum of matrix elements
1728         */
1729        public static double sum(final float[][] A) {
1730                double sum = 0;
1731                for (int i = 0; i < A.length; i++) {
1732                        for (int j = 0; j < A[i].length; j++) {
1733                                sum = sum + A[i][j];
1734                        }
1735                }
1736                return sum;
1737        }
1738
1739        // --------------------------------------------------
1740
1741        /**
1742         * Calculates the sum of the elements in the specified matrix row.
1743         *
1744         * @param A a matrix
1745         * @param row the row index
1746         * @return the sum of the row's elements
1747         */
1748        public static double sumRow(final double[][] A, final int row) {
1749                return sum(A[row]);
1750        }
1751
1752        /**
1753         * Calculates the sum of the elements in the specified matrix row.
1754         *
1755         * @param A a matrix
1756         * @param row the row index
1757         * @return the sum of the row's elements
1758         */
1759        public static double sumRow(final float[][] A, final int row) {
1760                return sum(A[row]);
1761        }
1762
1763
1764        /**
1765         * Calculates the sum of the elements in the specified matrix column.
1766         *
1767         * @param A a matrix
1768         * @param col the column index
1769         * @return the sum of the column's elements
1770         */
1771        public static double sumColumn(final double[][] A, final int col) {
1772                double sum = 0;
1773                for (int r = 0; r < A.length; r++) {
1774                        sum = sum + A[r][col];
1775                }
1776                return sum;
1777        }
1778
1779        /**
1780         * Calculates the sum of the elements in the specified matrix column.
1781         *
1782         * @param A a matrix
1783         * @param col the column index
1784         * @return the sum of the column's elements
1785         */
1786        public static double sumColumn(final float[][] A, final int col) {
1787                double sum = 0;
1788                for (int r = 0; r < A.length; r++) {
1789                        sum = sum + A[r][col];
1790                }
1791                return sum;
1792        }
1793
1794        /**
1795         * Calculates the sums of all matrix rows and returns them as a vector with one element per row.
1796         *
1797         * @param A a matrix of size (M,N)
1798         * @return a vector of length M containing the sums of all matrix columns
1799         */
1800        public static double[] sumRows(final double[][] A) {
1801                double[] sumVec = new double[getNumberOfRows(A)];
1802                for (int i = 0; i < sumVec.length; i++) {
1803                        double sum = 0;
1804                        for (int j = 0; j < A[i].length; j++) {
1805                                sum = sum + A[i][j];
1806                        }
1807                        sumVec[i] = sum;
1808                }
1809                return sumVec;
1810        }
1811
1812        /**
1813         * Calculates the sums of all matrix rows and returns them as a vector with one element per row.
1814         *
1815         * @param A a matrix of size (M,N)
1816         * @return a vector of length M containing the sums of all matrix columns
1817         */
1818        public static float[] sumRows(final float[][] A) {
1819                float[] sumVec = new float[getNumberOfRows(A)];
1820                for (int i = 0; i < sumVec.length; i++) {
1821                        double sum = 0;
1822                        for (int j = 0; j < A[i].length; j++) {
1823                                sum = sum + A[i][j];
1824                        }
1825                        sumVec[i] = (float) sum;
1826                }
1827                return sumVec;
1828        }
1829
1830        /**
1831         * Calculates the sums of all matrix columns and returns them as a vector with one element per column.
1832         *
1833         * @param A a matrix of size (M,N)
1834         * @return a vector of length N containing the sums of all matrix rows
1835         */
1836        public static double[] sumColumns(final double[][] A) {
1837                double[] sumVec = new double[getNumberOfColumns(A)];
1838                for (int c = 0; c < sumVec.length; c++) {
1839                        double sum = 0;
1840                        for (int r = 0; r < A.length; r++) {
1841                                sum = sum + A[r][c];
1842                        }
1843                        sumVec[c] = sum;
1844                }
1845                return sumVec;
1846        }
1847
1848        /**
1849         * Calculates the sums of all matrix columns and returns them as a vector with one element per column.
1850         *
1851         * @param A a matrix of size (M,N)
1852         * @return a vector of length N containing the sums of all matrix rows
1853         */
1854        public static float[] sumColumns(final float[][] A) {
1855                float[] sumVec = new float[getNumberOfColumns(A)];
1856                for (int c = 0; c < sumVec.length; c++) {
1857                        double sum = 0;
1858                        for (int r = 0; r < A.length; r++) {
1859                                sum = sum + A[r][c];
1860                        }
1861                        sumVec[c] = (float) sum;
1862                }
1863                return sumVec;
1864        }
1865
1866        // min/max of vectors ------------------------
1867
1868        /**
1869         * Returns the index of the smallest element in the specified vector. If the smallest value is not unique, the
1870         * lowest index is returned. An exception is thrown if the vector has zero length.
1871         *
1872         * @param a a vector
1873         * @return the index of the smallest value
1874         */
1875        public static int idxMin(double[] a) {
1876                if (a.length == 0)
1877                        throw new ZeroLengthVectorException();
1878                double minval = a[0];
1879                int minidx = 0;
1880                for (int i = 1; i < a.length; i++) {
1881                        if (a[i] < minval) {
1882                                minval = a[i];
1883                                minidx = i;
1884                        }
1885                }
1886                return minidx;
1887        }
1888
1889        /**
1890         * Returns the index of the smallest element in the specified vector. If the smallest value is not unique, the
1891         * lowest index is returned. An exception is thrown if the vector has zero length.
1892         *
1893         * @param a a vector
1894         * @return the index of the smallest value
1895         */
1896        public static int idxMin(float[] a) {
1897                if (a.length == 0)
1898                        throw new ZeroLengthVectorException();
1899                float minval = a[0];
1900                int minidx = 0;
1901                for (int i = 1; i < a.length; i++) {
1902                        if (a[i] < minval) {
1903                                minval = a[i];
1904                                minidx = i;
1905                        }
1906                }
1907                return minidx;
1908        }
1909
1910
1911        /**
1912         * Returns the index of the largest element in the specified vector. If the largest value is not unique, the lowest
1913         * index is returned. An exception is thrown if the vector has zero length.
1914         *
1915         * @param a a vector
1916         * @return the index of the largest value
1917         */
1918        public static int idxMax(double[] a) {
1919                if (a.length == 0)
1920                        throw new ZeroLengthVectorException();
1921                double maxval = a[0];
1922                int maxidx = 0;
1923                for (int i = 1; i < a.length; i++) {
1924                        if (a[i] > maxval) {
1925                                maxval = a[i];
1926                                maxidx = i;
1927                        }
1928                }
1929                return maxidx;
1930        }
1931
1932        /**
1933         * Returns the index of the largest element in the specified vector. If the largest value is not unique, the lowest
1934         * index is returned. An exception is thrown if the vector has zero length.
1935         *
1936         * @param a a vector
1937         * @return the index of the largest value
1938         */
1939        public static int idxMax(float[] a) {
1940                if (a.length == 0)
1941                        throw new ZeroLengthVectorException();
1942                float maxval = a[0];
1943                int maxidx = 0;
1944                for (int i = 1; i < a.length; i++) {
1945                        if (a[i] > maxval) {
1946                                maxval = a[i];
1947                                maxidx = i;
1948                        }
1949                }
1950                return maxidx;
1951        }
1952
1953
1954        /**
1955         * Returns the smallest value in the specified vector. An exception is thrown if the vector has zero length.
1956         *
1957         * @param a a vector
1958         * @return the largest value
1959         */
1960        public static float min(final float[] a) {
1961                if (a.length == 0)
1962                        throw new ZeroLengthVectorException();
1963                float minval = Float.POSITIVE_INFINITY;
1964                for (float val : a) {
1965                        if (val < minval) {
1966                                minval = val;
1967                        }
1968                }
1969                return minval;
1970        }
1971
1972        /**
1973         * Returns the smallest value in the specified vector. An exception is thrown if the vector has zero length.
1974         *
1975         * @param a a vector
1976         * @return the largest value
1977         */
1978        public static double min(final double[] a) {
1979                if (a.length == 0)
1980                        throw new ZeroLengthVectorException();
1981                double minval = Double.POSITIVE_INFINITY;
1982                for (double val : a) {
1983                        if (val < minval) {
1984                                minval = val;
1985                        }
1986                }
1987                return minval;
1988        }
1989
1990        /**
1991         * Returns the largest value in the specified {@code double[]} vector. An exception is thrown if the vector has zero
1992         * length.
1993         *
1994         * @param a a vector
1995         * @return the largest value
1996         */
1997        public static double max(final double[] a) {
1998                if (a.length == 0)
1999                        throw new ZeroLengthVectorException();
2000                double maxval = Double.NEGATIVE_INFINITY;
2001                for (double val : a) {
2002                        if (val > maxval) {
2003                                maxval = val;
2004                        }
2005                }
2006                return maxval;
2007        }
2008
2009        /**
2010         * Returns the largest value in the specified {@code float[]} vector. An exception is thrown if the vector has zero
2011         * length.
2012         *
2013         * @param a a vector
2014         * @return the largest value
2015         */
2016        public static float max(final float[] a) {
2017                if (a.length == 0)
2018                        throw new ZeroLengthVectorException();
2019                float maxval = Float.NEGATIVE_INFINITY;
2020                for (float val : a) {
2021                        if (val > maxval) {
2022                                maxval = val;
2023                        }
2024                }
2025                return maxval;
2026        }
2027
2028        /**
2029         * Returns the largest value in the specified {@code double[][]} matrix.
2030         *
2031         * @param A a matrix
2032         * @return the largest matrix value
2033         */
2034        public static double max(double[][] A) {
2035                double maxval = Double.NEGATIVE_INFINITY;
2036                for (int r = 0; r < A.length; r++) {
2037                        for (double val : A[r]) {
2038                                if (val > maxval) {
2039                                        maxval = val;
2040                                }
2041                        }
2042                }
2043                return maxval;
2044        }
2045
2046        /**
2047         * Returns the largest value in the specified {@code float[][]} matrix.
2048         *
2049         * @param A a matrix
2050         * @return the largest matrix value
2051         */
2052        public static float max(float[][] A) {
2053                float maxval = Float.NEGATIVE_INFINITY;
2054                for (int r = 0; r < A.length; r++) {
2055                        for (float val : A[r]) {
2056                                if (val > maxval) {
2057                                        maxval = val;
2058                                }
2059                        }
2060                }
2061                return maxval;
2062        }
2063
2064        // Vector concatenation -----------------------
2065
2066        /**
2067         * Joins (concatenates) a sequence of vectors into a single vector.
2068         *
2069         * @param as a sequence of vectors (at least one vector)
2070         * @return a vector containing all elements of the input vectors
2071         */
2072        public static float[] join(float[]... as) {
2073                int n = 0;
2074                for (float[] x : as) {
2075                        n = n + x.length;
2076                }
2077                float[] va = new float[n];
2078                int j = 0;
2079                for (float[] x : as) {
2080                        for (int i = 0; i < x.length; i++) {
2081                                va[j] = x[i];
2082                                j++;
2083                        }
2084                }
2085                return va;
2086        }
2087
2088        /**
2089         * Joins (concatenates) a sequence of vectors into a single vector.
2090         *
2091         * @param as a sequence of vectors (at least one vector)
2092         * @return a vector containing all elements of the input vectors
2093         */
2094        public static double[] join(double[]... as) {
2095                int n = 0;
2096                for (double[] x : as) {
2097                        n = n + x.length;
2098                }
2099                double[] va = new double[n];
2100                int j = 0;
2101                for (double[] x : as) {
2102                        for (int i = 0; i < x.length; i++) {
2103                                va[j] = x[i];
2104                                j++;
2105                        }
2106                }
2107                return va;
2108        }
2109
2110        // Vector linear interpolation ---------------------------------
2111
2112        /**
2113         * Performs linear interpolation between two vectors {@code a} and {@code b}, which must have the same length.
2114         * Returns a new vector {@code c = a + t * (b - a)}.
2115         *
2116         * @param a first vector (to be interpolated from)
2117         * @param b second vector (to be interpolated to)
2118         * @param t interpolation coefficient, expected to be in [0,1]
2119         * @return the interpolated vector
2120         */
2121        public static float[] lerp(float[] a, float[] b, final float t) {
2122                final float[] c = new float[a.length];
2123                for (int i = 0; i < a.length; i++) {
2124                        c[i] = a[i] + t * (b[i] - a[i]);
2125                }
2126                return c;
2127        }
2128
2129        /**
2130         * Performs linear interpolation between two vectors {@code a} and {@code b}, which must have the same length.
2131         * Returns a new vector {@code c = a + t * (b - a)}.
2132         *
2133         * @param a first vector (to be interpolated from)
2134         * @param b second vector (to be interpolated to)
2135         * @param t interpolation coefficient, expected to be in [0,1]
2136         * @return the interpolated vector
2137         */
2138        public static double[] lerp(double[] a, double[] b, final double t) {
2139                final double[] c = new double[a.length];
2140                for (int i = 0; i < a.length; i++) {
2141                        c[i] = a[i] + t * (b[i] - a[i]);
2142                }
2143                return c;
2144        }
2145
2146
2147        // Homogeneous coordinates ---------------------------------
2148
2149        /**
2150         * Converts a Cartesian vector to an equivalent homogeneous vector by attaching an additional 1-element. The
2151         * resulting homogeneous vector is one element longer than the specified Cartesian vector. See also
2152         * {@link #toCartesian(double[])}.
2153         *
2154         * @param ac a Cartesian vector
2155         * @return an equivalent homogeneous vector
2156         */
2157        public static double[] toHomogeneous(double[] ac) {
2158                double[] xh = new double[ac.length + 1];
2159                for (int i = 0; i < ac.length; i++) {
2160                        xh[i] = ac[i];
2161                        xh[xh.length - 1] = 1;
2162                }
2163                return xh;
2164        }
2165
2166        /**
2167         * Converts a homogeneous vector to its equivalent Cartesian vector, which is one element shorter. See also
2168         * {@link #toHomogeneous(double[])}.
2169         *
2170         * @param ah a homogeneous vector
2171         * @return the equivalent Cartesian vector
2172         * @throws DivideByZeroException if the last vector element is zero
2173         */
2174        public static double[] toCartesian(double[] ah) throws DivideByZeroException {
2175                double[] xc = new double[ah.length - 1];
2176                final double s = 1 / ah[ah.length - 1];
2177                if (!Double.isFinite(s))    // isZero(s)
2178                        throw new DivideByZeroException();
2179                for (int i = 0; i < ah.length - 1; i++) {
2180                        xc[i] = s * ah[i];
2181                }
2182                return xc;
2183        }
2184
2185        // Determinants --------------------------------------------
2186
2187        /**
2188         * Calculates and returns the determinant of the given {@link RealMatrix}. Throws an exception if the matrix is
2189         * non-square.
2190         *
2191         * @param A a square matrix
2192         * @return the determinant
2193         */
2194        public static double determinant(RealMatrix A) {
2195                if (!A.isSquare())
2196                        throw new NonsquareMatrixException();
2197                return new LUDecomposition(A).getDeterminant();
2198        }
2199
2200        /**
2201         * Calculates and returns the determinant of the given {@code double[][]} matrix. Throws an exception if the matrix
2202         * is non-square.
2203         *
2204         * @param A a square matrix
2205         * @return the determinant
2206         */
2207        public static double determinant(final double[][] A) {
2208                return determinant(MatrixUtils.createRealMatrix(A));
2209        }
2210
2211        /**
2212         * Calculates and returns the determinant of the given 2x2 {@code double[][]} matrix. This method is hard-coded for
2213         * the specific matrix size for better performance than the general method ({@link #determinant(double[][])}).
2214         * Throws an exception if the matrix is not 2x2.
2215         *
2216         * @param A a 2x2 matrix
2217         * @return the determinant
2218         */
2219        public static double determinant2x2(final double[][] A) {
2220                if (A.length != 2 || A[0].length != 2)
2221                        throw new IncompatibleDimensionsException();
2222                return A[0][0] * A[1][1] - A[0][1] * A[1][0];
2223        }
2224
2225        /**
2226         * Calculates and returns the determinant of the given 2x2 {@code float[][]} matrix. Throws an exception if the
2227         * matrix is not 2x2.
2228         *
2229         * @param A a 2x2 matrix
2230         * @return the determinant
2231         */
2232        public static float determinant2x2(final float[][] A) {
2233                if (A.length != 2 || A[0].length != 2)
2234                        throw new IncompatibleDimensionsException();
2235                return A[0][0] * A[1][1] - A[0][1] * A[1][0];
2236        }
2237
2238
2239        /**
2240         * Calculates and returns the determinant of the given 3x3 {@code double[][]} matrix. This method is hard-coded for
2241         * the specific matrix size for better performance than the general method ({@link #determinant(double[][])}).
2242         * Throws an exception if the matrix is not 3x3.
2243         *
2244         * @param A a 3x3 matrix
2245         * @return the determinant
2246         */
2247        public static double determinant3x3(final double[][] A) {
2248                if (A.length != 3 || A[0].length != 3)
2249                        throw new IncompatibleDimensionsException();
2250                return
2251                                A[0][0] * A[1][1] * A[2][2] +
2252                                                A[0][1] * A[1][2] * A[2][0] +
2253                                                A[0][2] * A[1][0] * A[2][1] -
2254                                                A[2][0] * A[1][1] * A[0][2] -
2255                                                A[2][1] * A[1][2] * A[0][0] -
2256                                                A[2][2] * A[1][0] * A[0][1];
2257        }
2258
2259        /**
2260         * Calculates and returns the determinant of the given 3x3 {@code float[][]} matrix. Throws an exception if the
2261         * matrix is not 3x3.
2262         *
2263         * @param A a 3x3 matrix
2264         * @return the determinant
2265         */
2266        public static float determinant3x3(final float[][] A) {
2267                if (A.length != 3 || A[0].length != 3)
2268                        throw new IncompatibleDimensionsException();
2269                return
2270                                A[0][0] * A[1][1] * A[2][2] +
2271                                                A[0][1] * A[1][2] * A[2][0] +
2272                                                A[0][2] * A[1][0] * A[2][1] -
2273                                                A[2][0] * A[1][1] * A[0][2] -
2274                                                A[2][1] * A[1][2] * A[0][0] -
2275                                                A[2][2] * A[1][0] * A[0][1];
2276        }
2277
2278
2279        // Matrix trace ---------------------------------------
2280
2281        /**
2282         * Calculates and returns the trace of the given {@code double[][]} matrix. Throws an exception if the matrix is
2283         * non-square.
2284         *
2285         * @param A a square matrix
2286         * @return the trace
2287         */
2288        public static double trace(final double[][] A) {
2289                final int m = getNumberOfRows(A);
2290                final int n = getNumberOfColumns(A);
2291                if (m != n)
2292                        throw new NonsquareMatrixException();
2293                double s = 0;
2294                for (int i = 0; i < m; i++) {
2295                        s = s + A[i][i];
2296                }
2297                return s;
2298        }
2299
2300        /**
2301         * Calculates and returns the trace of the given {@code float[][]} matrix. Throws an exception if the matrix is
2302         * non-square.
2303         *
2304         * @param A a square matrix
2305         * @return the trace
2306         */
2307        public static float trace(final float[][] A) {
2308                final int m = getNumberOfRows(A);
2309                final int n = getNumberOfColumns(A);
2310                if (m != n)
2311                        throw new NonsquareMatrixException();
2312                double s = 0;
2313                for (int i = 0; i < m; i++) {
2314                        s = s + A[i][i];
2315                }
2316                return (float) s;
2317        }
2318
2319        // Matrix transposition ---------------------------------------
2320
2321        /**
2322         * Returns the transpose of the given {@code double[][]} matrix. The original matrix is not modified.
2323         *
2324         * @param A a matrix
2325         * @return the transpose of the matrix
2326         */
2327        public static double[][] transpose(double[][] A) {
2328                final int m = getNumberOfRows(A);
2329                final int n = getNumberOfColumns(A);
2330                double[][] At = new double[n][m];
2331                for (int i = 0; i < m; i++) {
2332                        for (int j = 0; j < n; j++) {
2333                                At[j][i] = A[i][j];
2334                        }
2335                }
2336                return At;
2337        }
2338
2339        /**
2340         * Returns the transpose of the given {@code float[][]} matrix. The original matrix is not modified.
2341         *
2342         * @param A a matrix
2343         * @return the transpose of the matrix
2344         */
2345        public static float[][] transpose(float[][] A) {
2346                final int m = getNumberOfRows(A);
2347                final int n = getNumberOfColumns(A);
2348                float[][] At = new float[n][m];
2349                for (int i = 0; i < m; i++) {
2350                        for (int j = 0; j < n; j++) {
2351                                At[j][i] = A[i][j];
2352                        }
2353                }
2354                return At;
2355        }
2356
2357
2358        // Checking vectors for all zero values  ------------------------------
2359
2360        /**
2361         * Checks if all elements of the specified {@code double[]} vector are zero using the specified tolerance value.
2362         *
2363         * @param a a vector
2364         * @param tolerance the tolerance value
2365         * @return true if all vector elements are smaller than the tolerance
2366         */
2367        public static boolean isZero(double[] a, double tolerance) {
2368                for (int i = 0; i < a.length; i++) {
2369                        if (!Arithmetic.isZero(a[i], tolerance)) {
2370                                return false;
2371                        }
2372                }
2373                return true;
2374        }
2375
2376        /**
2377         * Checks if all elements of the specified {@code double[]} vector are zero using the default tolerance value
2378         * ({@link Arithmetic#EPSILON_DOUBLE}).
2379         *
2380         * @param a a vector
2381         * @return true if all vector elements are smaller than the tolerance
2382         */
2383        public static boolean isZero(double[] a) {
2384                return isZero(a, Arithmetic.EPSILON_DOUBLE);
2385        }
2386
2387        /**
2388         * Checks if all elements of the specified {@code float[]} vector are zero using the specified tolerance value.
2389         *
2390         * @param a a vector
2391         * @param tolerance the tolerance value
2392         * @return true if all vector elements are smaller than the tolerance
2393         */
2394        public static boolean isZero(float[] a, float tolerance) {
2395                for (int i = 0; i < a.length; i++) {
2396                        if (!Arithmetic.isZero(a[i], tolerance)) {
2397                                return false;
2398                        }
2399                }
2400                return true;
2401        }
2402
2403        /**
2404         * Checks if all elements of the specified {@code float[]} vector are zero using the default tolerance value
2405         * ({@link Arithmetic#EPSILON_DOUBLE}).
2406         *
2407         * @param a a vector
2408         * @return true if all vector elements are smaller than the tolerance
2409         */
2410        public static boolean isZero(float[] a) {
2411                return isZero(a, Arithmetic.EPSILON_FLOAT);
2412        }
2413
2414        // Checking matrices for all zero values  ------------------------------
2415
2416        /**
2417         * Checks if all elements of the specified {@code double[][]} matrix are zero using the specified tolerance value.
2418         *
2419         * @param A a matrix
2420         * @param tolerance the tolerance value
2421         * @return true if all matrix elements are smaller than the tolerance
2422         */
2423        public static boolean isZero(double[][] A, double tolerance) {
2424                for (int i = 0; i < A.length; i++) {    // for each matrix row i
2425                        if (!Matrix.isZero(A[i], tolerance)) {
2426                                return false;
2427                        }
2428                }
2429                return true;
2430        }
2431
2432        /**
2433         * Checks if all elements of the specified {@code double[][]} matrix are zero using default tolerance value
2434         * ({@link Arithmetic#EPSILON_DOUBLE}).
2435         *
2436         * @param A a matrix
2437         * @return true if all matrix elements are smaller than the tolerance
2438         */
2439        public static boolean isZero(double[][] A) {
2440                return isZero(A, Arithmetic.EPSILON_DOUBLE);
2441        }
2442
2443        // Sorting vectors (non-destructively)  ------------------------------
2444
2445        /**
2446         * Returns a sorted copy of the given {@code double[]} vector. Elements are sorted by increasing value (smallest
2447         * first).
2448         *
2449         * @param a a {@code double[]} vector
2450         * @return a sorted copy of the vector
2451         */
2452        public static double[] sort(double[] a) {
2453                double[] y = Arrays.copyOf(a, a.length);
2454                Arrays.sort(y);
2455                return y;
2456        }
2457
2458        /**
2459         * Returns a sorted copy of the given {@code float[]} vector. Elements are sorted by increasing value (smallest
2460         * first).
2461         *
2462         * @param a a {@code float[]} vector
2463         * @return a sorted copy of the vector
2464         */
2465        public static float[] sort(float[] a) {
2466                float[] y = Arrays.copyOf(a, a.length);
2467                Arrays.sort(y);
2468                return y;
2469        }
2470
2471        // Matrix inversion ---------------------------------------
2472
2473        /**
2474         * Calculates and returns the inverse of the given matrix, which must be square. Exceptions are thrown if the
2475         * supplied matrix is not square or ill-conditioned (singular).
2476         *
2477         * @param A a square matrix
2478         * @return the inverse matrix
2479         * @throws NonsquareMatrixException if the supplied matrix is not square
2480         */
2481        public static double[][] inverse(final double[][] A) throws NonsquareMatrixException {
2482                if (!isSquare(A))
2483                        throw new NonsquareMatrixException();
2484                RealMatrix M = MatrixUtils.createRealMatrix(A);
2485                return MatrixUtils.inverse(M).getData();
2486        }
2487
2488        /**
2489         * Calculates and returns the inverse of the given matrix, which must be square. Exceptions are thrown if the
2490         * supplied matrix is not square or ill-conditioned (singular).
2491         *
2492         * @param A a square matrix
2493         * @return the inverse matrix
2494         * @throws NonsquareMatrixException if the supplied matrix is not square
2495         */
2496        public static float[][] inverse(final float[][] A) throws NonsquareMatrixException {
2497                if (!isSquare(A))
2498                        throw new NonsquareMatrixException();
2499                double[][] Ad = toDouble(A);
2500                return toFloat(inverse(Ad));
2501        }
2502
2503        // ------------------------------------------------------------------------
2504
2505        /**
2506         * Finds the exact solution x for the linear system of equations A * x = b. Returns the solution vector x or
2507         * {@code null} if the supplied matrix is ill-conditioned (i.e., singular). Exceptions are thrown if A is not square
2508         * or dimensions are incompatible. Calls {@link #solve(RealMatrix, RealVector)}.
2509         *
2510         * @param A a square matrix of size n x n
2511         * @param b a vector of length n
2512         * @return the solution vector (x) of length n or {@code null} if no solution possible
2513         */
2514        public static double[] solve(final double[][] A, double[] b) {
2515                RealVector x = solve(MatrixUtils.createRealMatrix(A), MatrixUtils.createRealVector(b));
2516                return (x == null) ? null : x.toArray();
2517        }
2518
2519        /**
2520         * Finds the exact solution x for the linear system of equations A * x = b. Returns the solution vector x or
2521         * {@code null} if the supplied matrix is ill-conditioned (i.e., singular). Exceptions are thrown if A is not square
2522         * or dimensions are incompatible. Uses {@link LUDecomposition} from the Apache Commons Math library.
2523         *
2524         * @param A a square matrix of size n x n
2525         * @param b a vector of length n
2526         * @return the solution vector (x) of length n or {@code null} if no solution possible
2527         */
2528        public static RealVector solve(RealMatrix A, RealVector b) {
2529                if (!A.isSquare()) {
2530                        throw new NonsquareMatrixException();
2531                }
2532                if (A.getRowDimension() != b.getDimension()) {
2533                        throw new IncompatibleDimensionsException();
2534                }
2535//              DecompositionSolver solver = new LUDecomposition(A, 0.0).getSolver();
2536                DecompositionSolver solver = new LUDecomposition(A).getSolver();
2537                RealVector x = null;
2538                try {
2539                        x = solver.solve(b);
2540                } catch (SingularMatrixException e) {
2541                }
2542                return x;
2543        }
2544
2545        // Output to strings and streams ------------------------------------------
2546
2547        /**
2548         * Returns a string representation of the specified vector.
2549         *
2550         * @param a a vector
2551         * @return the string representation
2552         */
2553        public static String toString(double[] a) {
2554                if (a == null) {
2555                        return String.valueOf(a);
2556                }
2557                ByteArrayOutputStream bas = new ByteArrayOutputStream();
2558                PrintStream strm = new PrintStream(bas);
2559                printToStream(a, strm);
2560                return bas.toString();
2561        }
2562
2563        /**
2564         * Returns a string representation of the specified vector.
2565         *
2566         * @param a a vector
2567         * @return the string representation
2568         */
2569        public static String toString(float[] a) {
2570                if (a == null) {
2571                        return String.valueOf(a);
2572                }
2573                ByteArrayOutputStream bas = new ByteArrayOutputStream();
2574                PrintStream strm = new PrintStream(bas);
2575                printToStream(a, strm);
2576                return bas.toString();
2577        }
2578
2579        /**
2580         * Returns a string representation of the specified vector.
2581         *
2582         * @param a a vector
2583         * @return the string representation
2584         */
2585        public static String toString(RealVector a) {
2586                if (a == null) {
2587                        return String.valueOf(a);
2588                } else {
2589                        return toString(a.toArray());
2590                }
2591        }
2592
2593        /**
2594         * Returns a string representation of the specified matrix.
2595         *
2596         * @param A a matrix
2597         * @return the string representation
2598         */
2599        public static String toString(double[][] A) {
2600                if (A == null) {
2601                        return String.valueOf(A);
2602                }
2603                ByteArrayOutputStream bas = new ByteArrayOutputStream();
2604                PrintStream strm = new PrintStream(bas);
2605                printToStream(A, strm);
2606                return bas.toString();
2607        }
2608
2609        /**
2610         * Returns a string representation of the specified matrix.
2611         *
2612         * @param A a matrix
2613         * @return the string representation
2614         */
2615        public static String toString(float[][] A) {
2616                if (A == null) {
2617                        return String.valueOf(A);
2618                }
2619                ByteArrayOutputStream bas = new ByteArrayOutputStream();
2620                PrintStream strm = new PrintStream(bas);
2621                printToStream(A, strm);
2622                return bas.toString();
2623        }
2624
2625        /**
2626         * Returns a string representation of the specified matrix with {@code long} elements.
2627         *
2628         * @param A a matrix
2629         * @return the string representation
2630         */
2631        public static String toString(long[][] A) {
2632                if (A == null) {
2633                        return String.valueOf(A);
2634                }
2635                ByteArrayOutputStream bas = new ByteArrayOutputStream();
2636                PrintStream strm = new PrintStream(bas);
2637                printToStream(A, strm);
2638                return bas.toString();
2639        }
2640
2641        /**
2642         * Returns a string representation of the specified matrix.
2643         *
2644         * @param A a matrix
2645         * @return the string representation
2646         */
2647        public static String toString(RealMatrix A) {
2648                if (A == null) {
2649                        return String.valueOf(A);
2650                } else {
2651                        return toString(A.getData());
2652                }
2653        }
2654
2655        // --------------------
2656
2657        /**
2658         * Outputs a string representation of the given vector to the specified output stream.
2659         *
2660         * @param a the vector
2661         * @param strm the output stream
2662         * @see #toString(double[])
2663         */
2664        public static void printToStream(double[] a, PrintStream strm) {
2665                String fStr = PrintPrecision.getFormatStringFloat();
2666                strm.format("%c", LeftDelimitChar);
2667                for (int i = 0; i < a.length; i++) {
2668                        if (i > 0)
2669                                strm.format("%c ", SeparationChar);
2670                        strm.format(PrintLocale, fStr, a[i]);
2671                }
2672                strm.format("%c", RightDelimitChar);
2673                strm.flush();
2674        }
2675
2676        /**
2677         * Outputs a string representation of the given matrix to the specified output stream.
2678         *
2679         * @param A the matrix
2680         * @param strm the output stream
2681         * @see #toString(double[][])
2682         */
2683        public static void printToStream(double[][] A, PrintStream strm) {
2684                String fStr = PrintPrecision.getFormatStringFloat();
2685                strm.format("%c", LeftDelimitChar);
2686                for (int i = 0; i < A.length; i++) {
2687                        if (i == 0)
2688                                strm.format("%c", LeftDelimitChar);
2689                        else
2690                                strm.format("%c \n%c", SeparationChar, LeftDelimitChar);
2691                        for (int j = 0; j < A[i].length; j++) {
2692                                if (j == 0)
2693                                        strm.format(PrintLocale, fStr, A[i][j]);
2694                                else
2695                                        strm.format(PrintLocale, "%c " + fStr, SeparationChar, A[i][j]);
2696                        }
2697                        strm.format("%c", RightDelimitChar);
2698                }
2699                strm.format("%c", RightDelimitChar);
2700                strm.flush();
2701        }
2702
2703        /**
2704         * Outputs a string representation of the given vector to the specified output stream.
2705         *
2706         * @param a the vector
2707         * @param strm the output stream
2708         * @see #toString(float[])
2709         */
2710        public static void printToStream(float[] a, PrintStream strm) {
2711                String fStr = PrintPrecision.getFormatStringFloat();
2712                strm.format("%c", LeftDelimitChar);
2713                for (int i = 0; i < a.length; i++) {
2714                        if (i > 0)
2715                                strm.format("%c ", SeparationChar);
2716                        strm.format(PrintLocale, fStr, a[i]);
2717                }
2718                strm.format("%c", RightDelimitChar);
2719                strm.flush();
2720        }
2721
2722        /**
2723         * Outputs a string representation of the given matrix to the specified output stream.
2724         *
2725         * @param A the matrix
2726         * @param strm the output stream
2727         * @see #toString(float[][])
2728         */
2729        public static void printToStream(float[][] A, PrintStream strm) {
2730                String fStr = PrintPrecision.getFormatStringFloat();
2731                strm.format("%c", LeftDelimitChar);
2732                for (int i = 0; i < A.length; i++) {
2733                        if (i == 0)
2734                                strm.format("%c", LeftDelimitChar);
2735                        else
2736                                strm.format("%c \n%c", SeparationChar, LeftDelimitChar);
2737                        for (int j = 0; j < A[i].length; j++) {
2738                                if (j == 0)
2739                                        strm.format(PrintLocale, fStr, A[i][j]);
2740                                else
2741                                        strm.format(PrintLocale, "%c " + fStr, SeparationChar, A[i][j]);
2742                        }
2743                        strm.format("%c", RightDelimitChar);
2744                }
2745                strm.format("%c", RightDelimitChar);
2746                strm.flush();
2747        }
2748
2749        // --------------------------------------------------------------------------
2750
2751        public static void printToStream(long[][] A, PrintStream strm) {
2752                strm.format("%c", LeftDelimitChar);
2753                for (int i = 0; i < A.length; i++) {
2754                        if (i == 0)
2755                                strm.format("%c", LeftDelimitChar);
2756                        else
2757                                strm.format("%c \n%c", SeparationChar, LeftDelimitChar);
2758                        for (int j = 0; j < A[i].length; j++) {
2759                                if (j == 0)
2760                                        strm.format(PrintLocale, "%dL", A[i][j]);
2761                                else
2762                                        strm.format(PrintLocale, "%c %dL", SeparationChar, A[i][j]);
2763                        }
2764                        strm.format("%c", RightDelimitChar);
2765                }
2766                strm.format("%c", RightDelimitChar);
2767                strm.flush();
2768        }
2769
2770        // Exceptions ----------------------------------------------------------------
2771
2772        /**
2773         * Thrown when the dimensions of matrix/vector arguments do not match.
2774         */
2775        public static class IncompatibleDimensionsException extends RuntimeException {
2776                public IncompatibleDimensionsException() {
2777                        super("incompatible matrix-vector dimensions");
2778                }
2779
2780                public IncompatibleDimensionsException(String msg) {
2781                        super(msg);
2782                }
2783        }
2784
2785        /**
2786         * Thrown when a non-square matrix is encountered where a square matrix is assumed.
2787         */
2788        public static class NonsquareMatrixException extends RuntimeException {
2789                public NonsquareMatrixException() {
2790                        super("square matrix expected");
2791                }
2792
2793                public NonsquareMatrixException(String msg) {
2794                        super(msg);
2795                }
2796        }
2797
2798        /**
2799         * Thrown when source and target objects are identical but shouldn't.
2800         */
2801        public static class SameSourceTargetException extends RuntimeException {
2802                public SameSourceTargetException() {
2803                        super("source and target must not be the same");
2804                }
2805
2806                public SameSourceTargetException(String msg) {
2807                        super(msg);
2808                }
2809        }
2810
2811        /**
2812         * Thrown when the length of some vector is zero.
2813         */
2814        public static class ZeroLengthVectorException extends RuntimeException {
2815                public ZeroLengthVectorException() {
2816                        super("vector length must be at least 1");
2817                }
2818
2819                public ZeroLengthVectorException(String msg) {
2820                        super(msg);
2821                }
2822        }
2823
2824}