001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.math; 011 012import org.apache.commons.math3.linear.CholeskyDecomposition; 013import org.apache.commons.math3.linear.EigenDecomposition; 014import org.apache.commons.math3.linear.MatrixUtils; 015import org.apache.commons.math3.linear.RealMatrix; 016import org.apache.commons.math3.stat.correlation.Covariance; 017 018import static imagingbook.common.math.Statistics.conditionCovarianceMatrix; 019import static imagingbook.common.math.Statistics.covarianceMatrix; 020 021/** 022 * <p> 023 * This class implements the Mahalanobis distance using the Apache Commons Math library. No statistical bias correction 024 * is used. See the Appendix G (Sections G.2-G.3) of [1] for additional details and examples. 025 * </p> 026 * <p> 027 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 028 * (2022). 029 * </p> 030 * 031 * @author WB 032 * @version 2023/01/01 033 */ 034public class MahalanobisDistance { 035 036 /** 037 * The default minimum diagonal value used to condition the covariance matrix. 038 */ 039 public static final double DefaultMinimumDiagonalValue = 1.0E-15; 040 041 /** 042 * Tolerance used for validating symmetry in the Cholesky decomposition. See 043 * {@link CholeskyDecomposition#DEFAULT_RELATIVE_SYMMETRY_THRESHOLD} (1.0E-15), which seems too small). 044 */ 045 public static final double DefaultRelativeSymmetryThreshold = 1.0E-6; 046 047 /** 048 * Tolerance used for validating positvity in the Cholesky decomposition. See 049 * {@link CholeskyDecomposition#DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD}. 050 */ 051 public static final double DefaultAbsolutePositivityThreshold = 052 CholeskyDecomposition.DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD; 053 054 private final int m; // feature dimension (length of sample vectors) 055 private final double[][] cov; // covariance matrix of size m x m 056 private final double[][] icov; // inverse covariance matrix of size m x m 057 058 /** 059 * Constructor, creates a new {@link MahalanobisDistance} instance from the m x m covariance matrix and the 060 * m-dimensional mean vector of a distribution of m-dimensional data. The covariance matrix is assumed to be 061 * properly conditioned, i.e., has all-positive diagonal values. 062 * 063 * @param cov the covariance matrix of size m x m 064 */ 065 public MahalanobisDistance(double[][] cov) { 066 this.m = cov.length; 067 if (!Matrix.isSquare(cov)) { 068 throw new IllegalArgumentException("covariance matrix must be square"); 069 } 070 if (!Matrix.isSymmetric(cov)) { 071 throw new IllegalArgumentException("covariance matrix must be symmetric"); 072 } 073 this.cov = cov; 074 this.icov = Matrix.inverse(cov); 075 } 076 077 /** 078 * Creates a new {@link MahalanobisDistance} instance from an array of m-dimensional samples, e.g., samples = {{x1,y1}, 079 * {x2,y2},...,{xn,yn}} for a vector of n two-dimensional samples. Uses {@link #DefaultMinimumDiagonalValue} to 080 * condition the covariance matrix. 081 * 082 * @param samples a sequence of m-dimensional samples, i.e., samples[k][i] represents the i-th component of the k-th 083 * sample 084 * @return a {@link MahalanobisDistance} instance 085 */ 086 public static MahalanobisDistance fromSamples(double[][] samples) { 087 return fromSamples(samples, DefaultMinimumDiagonalValue); 088 } 089 090 /** 091 * Creates a new {@link MahalanobisDistance} instance from an array of m-dimensional samples, e.g. samples = 092 * {{x1,y1}, {x2,y2},...,{xn,yn}} for a vector of two-dimensional samples (n = 2). 093 * 094 * @param samples a vector of length n with m-dimensional samples, i.e., samples[k][i] represents the i-th component 095 * of the k-th sample 096 * @param minDiagVal the minimum diagonal value used to condition the covariance matrix to avoid singularity (see 097 * {@link #DefaultMinimumDiagonalValue}) 098 * @return a {@link MahalanobisDistance} instance 099 */ 100 public static MahalanobisDistance fromSamples(double[][] samples, double minDiagVal) { 101 if (samples.length < 2) 102 throw new IllegalArgumentException("number of samples must be 2 or more"); 103 if (samples[0].length < 1) 104 throw new IllegalArgumentException("sample dimension must be at least 1"); 105 double[][] cov = covarianceMatrix(samples); 106 return new MahalanobisDistance(conditionCovarianceMatrix(cov, minDiagVal)); 107 } 108 109 //------------------------------------------------------------------------------------ 110 111 /** 112 * Returns the sample dimension (M) for this instance. 113 * @return the sample dimension 114 */ 115 public int getDimension() { 116 return m; 117 } 118 119 /** 120 * Returns the covariance matrix used for distance calculations. 121 * @return the conditioned covariance matrix 122 */ 123 public double[][] getCovarianceMatrix() { 124 return cov; 125 } 126 127 /** 128 * Returns the inverse of the conditioned covariance matrix. 129 * @return the inverse of the conditioned covariance matrix 130 */ 131 public double[][] getInverseCovarianceMatrix() { 132 return icov; 133 } 134 135 //------------------------------------------------------------------------------------ 136 137 /** 138 * Returns the 'root' (U) of the inverse covariance matrix S^{-1}, such that S^{-1} = U^T . U This matrix can be 139 * used to pre-transform the original sample vectors X (by X → U . X) to a space where distance (in the 140 * Mahalanobis sense) can be measured with the usual Euclidean norm. The matrix U is invertible in case the reverse 141 * transformation is required. 142 * 143 * @return the m x m matrix for pre-transforming the original (m-dimensional) sample vectors 144 */ 145 public double[][] getWhiteningTransformation() { 146 return getWhiteningTransformation(DefaultRelativeSymmetryThreshold, DefaultAbsolutePositivityThreshold); 147 } 148 149 /** 150 * Returns the 'root' (U) of the inverse covariance matrix S^{-1}, such that S^{-1} = U^T . U This matrix can be * 151 * used to pre-transform the original sample vectors X (by X → U . X) to a space where distance (in the * 152 * Mahalanobis sense) can be measured with the usual Euclidean norm. The matrix U is invertible in case the reverse 153 * * transformation is required. 154 * 155 * @param relativeSymmetryThreshold maximum deviation from symmetry (see {@link #DefaultRelativeSymmetryThreshold}) 156 * @param absolutePositivityThreshold maximum deviation from positivity (see {@link #DefaultAbsolutePositivityThreshold}) 157 * @return 158 */ 159 public double[][] getWhiteningTransformation(double relativeSymmetryThreshold, double absolutePositivityThreshold) { 160 CholeskyDecomposition cd = 161 new CholeskyDecomposition(MatrixUtils.createRealMatrix(icov), 162 relativeSymmetryThreshold, absolutePositivityThreshold); 163 RealMatrix U = cd.getLT(); 164 return U.getData(); 165 } 166 167 //------------------------------------------------------------------------------------ 168 169 /** 170 * Returns the Mahalanobis distance between the given points. 171 * @param a first point 172 * @param b second point 173 * @return the Mahalanobis distance 174 */ 175 public double distance(double[] a, double[] b) { 176 return Math.sqrt(distance2(a, b)); 177 } 178 179 /** 180 * Returns the squared Mahalanobis distance between the given points a, b: d^2(a,b) = (a-b)^T . S^{-1} . (a-b) 181 * 182 * @param a first point 183 * @param b second point 184 * @return the squared Mahalanobis distance 185 */ 186 public double distance2(double[] a, double[] b) { 187 if (a.length != m || b.length != m) { 188 throw new IllegalArgumentException("vectors a, b must be of length " + m); 189 } 190 double[] amb = Matrix.subtract(a, b); // amb = a - b 191 return Matrix.dotProduct(Matrix.multiply(amb, icov), amb); 192 193 } 194 195 // original version 196// public double distance2(double[] X, double[] Y) { 197// if (X.length != m || Y.length != m) { 198// throw new IllegalArgumentException("vectors must be of length " + m); 199// } 200// // d^2(X,Y) = (X-Y)^T . S^{-1} . (X-Y) 201// double[] dXY = new double[m]; // = (X-Y) 202// for (int k = 0; k < m; k++) { 203// dXY[k] = X[k] - Y[k]; 204// } 205// double[] iSdXY = new double[m]; // = S^{-1} . (X-Y) 206// for (int k = 0; k < m; k++) { 207// for (int i = 0; i < m; i++) { 208// iSdXY[k] += icov[i][k] * dXY[i]; 209// } 210// } 211// double d2 = 0; // final sum 212// for (int k = 0; k < m; k++) { 213// d2 += dXY[k] * iSdXY[k]; 214// } // d = (X-Y)^T . S^{-1} . (X-Y) 215// return d2; 216// } 217 218}