001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.math;
011
012import java.util.Locale;
013
014import static imagingbook.common.math.Arithmetic.isZero;
015import static imagingbook.common.math.Arithmetic.sqr;
016
017/**
018 * <p>
019 * This class represents complex numbers. All instances are immutable. Methods are mostly defined to be compatible with
020 * org.apache.commons.math3.complex.Complex and (newer) org.apache.commons.numbers.complex.Complex. Arithmetic
021 * operations are generally more precise than with the Apache implementation. See also Appendix Sec. A.5 of [1].
022 * </p>
023 * <p>
024 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
025 * (2022).
026 * </p>
027 *
028 * @author WB
029 * @version 2022/07/05
030 */
031public class Complex {
032        
033        /** Constant - real unit value (z = 1 + i 0). */
034        public static final Complex ONE = new Complex(1, 0);
035        /** Constant - complex zero value (z = 0 + i 0). */
036        public static final Complex ZERO = new Complex(0, 0);
037        /** Constant -  imaginary unit value (z = 0 + i 1). */
038        public static final Complex I = new Complex(0, 1);
039
040        /** The real part of this complex number (publicly accessible but read-only). */
041        public final double re;
042        /** The imaginary part of this complex number (publicly accessible but read-only). */
043        public final double im;
044
045        /**
046         * Constructor.
047         * @param re real part
048         * @param im imaginary part
049         */
050        public Complex(double re, double im) {
051                this.re = re;
052                this.im = im;
053        }
054        
055        /**
056         * Constructor.
057         * @param z a two-element {@code double} array with real and imaginary part
058         */
059        public Complex(double[] z) {
060                this(z[0], z[1]);
061        }
062
063        /**
064         * Constructor.
065         * @param z complex quantity, which is duplicated
066         */
067        public Complex(Complex z) {
068                this.re = z.re;
069                this.im = z.im;
070        }
071
072        /**
073         * Constructor, creates a complex quantity on the unit circle with angle {@code phi}:
074         * {@code e^(i * phi) = cos(phi) + i * sin(phi)}.
075         *
076         * @param phi the angle
077         * @see #arg()
078         */
079        public Complex(double phi) {
080                this.re = Math.cos(phi);
081                this.im = Math.sin(phi);
082        }
083        
084        // -------------------------------------------------------------------
085
086        /**
087         * Returns the absolute value of this complex number, i.e., its radius or distance from the origin.
088         *
089         * @return the absolute value
090         */
091        public double abs() {
092                return Math.hypot(re, im);
093        }
094
095        /**
096         * Returns the squared absolute value of this complex number, i.e., its squared radius or distance from the origin.
097         *
098         * @return the squared absolute value
099         */
100        public double abs2() {
101                return sqr(re) + sqr(im);
102        }
103
104        /**
105         * Returns the 'argument' of this complex number, i.e., its angle w.r.t. to the real axis.
106         *
107         * @return the argument (in radians)
108         */
109        public double arg() {
110                return Math.atan2(im, re);
111        }
112
113        /**
114         * Returns the conjugate {@code z*} of this complex number, i.e, if {@code z = a + i b} then {@code z* = a - i b}.
115         *
116         * @return the complex conjugate
117         */
118        public Complex conjugate() {
119                return new Complex(this.re, -this.im);
120        }
121
122        /**
123         * Adds a complex quantity to this complex number and returns a new complex number.
124         *
125         * @param z complex value
126         * @return the sum of this complex number and {@code z}
127         */
128        public Complex add(Complex z) {
129                return new Complex(this.re + z.re,  this.im + z.im);
130        }
131
132        /**
133         * Rotates this complex number by angle {@code phi} and returns the resulting complex number.
134         *
135         * @param phi the angle (in radians)
136         * @return the rotated complex value
137         */
138        public Complex rotate(double phi) {
139                return this.multiply(new Complex(phi));
140        }
141
142        @Override
143    public String toString() {
144        return String.format(Locale.US, "(%.9f, %.9f)", re, im);
145    }
146
147        /**
148         * Returns true if the real or imaginary component of this complex number is {@code NaN}.
149         *
150         * @return true if {@code NaN}, otherwise false
151         */
152        public boolean isNaN() {
153                return Double.isNaN(this.getRe()) || Double.isNaN(this.getIm());
154        }
155
156        /**
157         * Returns the real part of this complex number.
158         *
159         * @return the real part
160         */
161        public double getRe() {
162                return this.re;
163        }
164        
165        /**
166         * Returns the imaginary part of this complex number.
167         * @return the imaginary part
168         */
169        public double getIm() {
170                return this.im;
171        }
172
173        // -------------------------------------------------------
174
175        /**
176         * Multiplies this complex number with another complex quantity and returns a new complex number.
177         *
178         * @param z a complex quantity
179         * @return this complex number multiplied by {@code z}
180         */
181        public Complex multiply(Complex z) {
182                // (x1 + i y1)(x2 + i y2) = (x1 x2 + y1 y2) + i (x1 y2 + y1 x2)
183                final double x = this.re * z.re - this.im * z.im;
184                final double y = this.re * z.im + this.im * z.re;
185                return new Complex(x, y);
186        }
187
188        /**
189         * Multiplies this complex number with the scalar factor {@code s} and returns a new complex number.
190         *
191         * @param s a scalar factor
192         * @return this complex number multiplied by {@code s}
193         */
194        public Complex multiply(double s) {
195                return new Complex(this.re * s, this.im * s);
196        }
197
198        /**
199         * Returns of value of this complex number ({@code z}) raised to the power {@code k} (integer).
200         *
201         * @param k the integer exponent (&ge; 0)
202         * @return {@code z^k}
203         */
204        public Complex pow(int k) {
205                if (k < 0) throw new IllegalArgumentException("exponent k >= 0 expected");
206                Complex prod = new Complex(1, 0);
207                for (int i = 0; i < k; i++) {
208                        prod = prod.multiply(this);
209                }
210                return prod;
211        }
212
213        /**
214         * Returns a 2-element array with the real and imaginary part of this complex number.
215         *
216         * @return (re, im)
217         */
218        public double[] toArray() {
219                return new double[] {this.re, this.im};
220        }
221
222        /**
223         * Checks if the given {@link Object} is equal to this {@link Complex} quantity. Calls
224         * {@link #equals(Complex, double)} if the argument is of type {@link Complex}, otherwise {@code null} is returned.
225         */
226        @Override
227        public boolean equals(Object other) {
228        if (other == this) {
229            return true;
230        }       
231        if (other instanceof Complex) {
232//              final Complex z = (Complex) other;
233//              return Double.compare(this.re, z.re) == 0 && Double.compare(this.im, z.im) == 0;
234                return this.equals((Complex) other, Arithmetic.EPSILON_DOUBLE);
235        }
236        return false;
237        }
238
239        /**
240         * Checks if the given {@link Complex} quantity is equal to this {@link Complex} quantity.
241         *
242         * @param z another {@link Complex} quantity
243         * @param tolerance the maximum difference of real and imaginary parts
244         * @return true if the two complex quantities are sufficiently close, false otherwise
245         */
246        public boolean equals(Complex z, double tolerance) {
247                return isZero(this.re - z.re, tolerance) 
248                                && isZero(this.im - z.im, tolerance);
249        }
250
251        /**
252         * Checks if the given complex quantity is equal to this {@link Complex} quantity, using the default tolerance
253         * ({@link Arithmetic#EPSILON_DOUBLE}).
254         *
255         * @param re real part of other complex quantity
256         * @param im imaginary part of other complex quantity
257         * @return true if the two complex quantities are sufficiently close, false otherwise
258         */
259        public boolean equals(double re, double im) {
260                //return Double.compare(this.re, re) == 0 && Double.compare(this.im, im) == 0;
261                return this.equals(re, im, Arithmetic.EPSILON_DOUBLE);
262        }
263
264        /**
265         * Checks if the given complex quantity is equal to this {@link Complex} quantity, using the specified tolerance.
266         *
267         * @param re real part of other complex quantity
268         * @param im imaginary part of other complex quantity
269         * @param tolerance the maximum difference of real and imaginary parts
270         * @return true if the two complex quantities are sufficiently close, false otherwise
271         */
272        public boolean equals(double re, double im, double tolerance) {
273                return isZero(this.re - re, tolerance) 
274                                && isZero(this.im - im, tolerance);
275        }
276        
277}