001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.image.matching.lucaskanade;
010
011import ij.IJ;
012import imagingbook.common.math.Matrix;
013
014
015public class LucasKanadeMatcher1D {
016
017        
018        final double[] I;
019        final double[] R;
020        final int M, N;
021        final double xc;
022        final double[] gI;
023        
024        int maxIterations = 100;
025        
026        public void setMaxIterations(int maxIterations) {
027                this.maxIterations = maxIterations;
028        }
029
030        double tolerance = 0.00001;
031        
032        public void setTolerance(double tolerance) {
033                this.tolerance = tolerance;
034        }
035
036        private int n;                  // number of warp parameters
037        private double qmag;    // magnitude of parameter difference vector
038        private double sqrError;        // squared sum of differences between I and R
039        
040        private int margin = 0; // left and right margins to be ignored for matching
041        
042        private int iteration;
043
044        
045        public LucasKanadeMatcher1D(double[] I, double[] R) {
046                this.I = I;
047                this.R = R;
048                this.M = I.length;
049                this.N = R.length;
050                xc = 0.5 * M;
051                this.gI = makeGradient(I);
052        }
053        
054        public double[] getBestMatch(double[] pInit) {
055                double[] p = pInit.clone();
056                n = p.length;
057                iteration = 0;
058                qmag = Double.MAX_VALUE;
059                do {
060                        p = iterateOnce(p);     
061                } while (p != null && qmag > tolerance && iteration < maxIterations);
062                return p;
063        }
064        
065        
066        private double[] iterateOnce(double[] p) {
067                iteration = iteration + 1;
068                
069                double[][] H = new double[n][n];        // n x n cumulated Hessian matrix, initialized to 0
070                double[] dp = new double[n];            // n-dim vector \delta_p = 0
071                sqrError = 0;
072
073                // for all positions u in R do
074                for (int u = margin; u < N - margin; u++) {
075                        double x = u - xc;      // position w.r.t. the center of R
076                        double xT = T(p, x);            // warp x -> x'
077                        double g = interpolate(gI, xT + xc);    // interpolated gradient in x-direction
078                        double[] G = {g};                               // degenerate (1D) gradient vector
079                        
080                        // Step 4: Evaluate the Jacobian of the warp T at position x
081                        double[][] J = getJacobianT(p, x); // a (1 x 2) matrix
082                        
083                        // Step 5: compute the steepest descent image:
084                        double[] sx = Matrix.multiply(G, J); // a 2-dim vector
085                        
086                        // Step 6: Update the cumulative Hessian matrix
087                        double[][] Hx = Matrix.outerProduct(sx, sx);
088                        H = Matrix.add(H, Hx);
089                        
090                        // Step 7: Calculate the error
091                        double d = R[u] - interpolate(I, xT + xc);
092                        sqrError = sqrError + d * d;
093                        
094                        
095                        // Step 8: update the column vector dp:
096                        dp = Matrix.add(dp, Matrix.multiply(d, sx));
097                }
098                
099                // IJ.log(String.format(" iteration=%d  s=%.4f t=%.4f  sqrError=%.3f", iteration, p[0]+1, p[1], sqrError));
100                // Step 9: calculate the optimal parameter change:
101                
102                double[] qopt = Matrix.solve(H, dp);
103                if (qopt == null) {
104                        // IJ.log("singular Hessian!");
105                        return null;
106                }
107                
108                qmag = Matrix.normL2squared(qopt);
109                
110                // Step 10: Update and return the warp parameters p + qopt:
111                return Matrix.add(p, qopt);
112        }
113
114        private double[] makeGradient(double[] I) {
115                int M = I.length;       // I is assumed 0 outside
116                double[] G = new double[M];
117                G[0] = 0.5 * I[1];
118                for (int i = 1; i < M - 1; i++) {
119                        G[i] = 0.5 * (I[i+1] - I[i-1]);
120                }
121                G[M-1] = 0.5 * -I[M-2];
122                return G;
123        }
124        
125        private double T(double[] p, double u) {
126                final double s = p[0] + 1;
127                final double t = p[1];
128                return s * u + t;
129        }
130        
131        private double[][] getJacobianT(double[] p, double x) {
132//              final double s = p[0];
133//              final double t = p[1];
134                return new double[][] {{x, 1}}; // degenerate case: (1 x n) matrix
135        }
136        
137        private double interpolate(double[] A, double x) {
138                int u0 = (int) Math.floor(x);
139                int u1 = u0 + 1;
140                double d = x - u0;
141                double a0 = (u0 >= 0 && u0 < A.length) ? A[u0] : 0;
142                double a1 = (u1 >= 0 && u1 < A.length) ? A[u1] : 0;
143                return (1 - d) * a0 + d * a1;
144        }
145        
146        public double getRmsError() {
147                return Math.sqrt(sqrError);
148        }
149
150}