001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.image.matching.lucaskanade;
010
011import ij.ImagePlus;
012import ij.process.FloatProcessor;
013import imagingbook.common.geometry.basic.Pnt2d;
014import imagingbook.common.geometry.basic.Pnt2d.PntDouble;
015import imagingbook.common.geometry.mappings.linear.AffineMapping2D;
016import imagingbook.common.geometry.mappings.linear.ProjectiveMapping2D;
017import imagingbook.common.geometry.mappings.linear.Translation2D;
018import imagingbook.common.math.Matrix;
019import imagingbook.common.util.ParameterBundle;
020
021/**
022 * <p>
023 * This is the common super-class for different variants of the Lucas-Kanade matcher [1]. See Ch. 24 of [2] for
024 * additional details.
025 * </p>
026 * <p>
027 * [1] B. D. Lucas and T. Kanade. "An iterative image registration technique with an application to stereo vision". In
028 * Proceedings of the 7th International Joint Conference on Artificial Intelligence IJCAI’81, pp. 674–679, Vancouver, BC
029 * (1981).
030 * <br>
031 * [2] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
032 * (2022).
033 * </p>
034 *
035 * @author WB
036 * @version 2022/12/16
037 */
038public abstract class LucasKanadeMatcher {
039
040        /**
041         * Default parameters for the containing class and its sub-classes; a (usually modified) instance of this class is
042         * passed to the constructor of a non-abstract sub-class.
043         */
044        public static class Parameters implements ParameterBundle<LucasKanadeMatcher> {
045                /** Convergence limit */
046                public double tolerance = 0.00001;
047                /** Maximum number of iterations */
048                public int maxIterations = 100;
049                /** Set true to output debug information */
050                public boolean debug = false;
051                /** Set true to display the steepest-descent images */
052                public boolean showSteepestDescentImages = false;
053                /** Set true to display the Hessian matrices */
054                public boolean showHessians = false;
055        }
056        
057        final FloatProcessor I;                 // search image
058        final FloatProcessor R;                 // reference image
059        final Parameters params;                // parameter object
060        
061        final int wR, hR;                               // width/height of R
062        final double xc, yc;                    // center (origin) of R
063        
064        int iteration = -1;
065        
066        /**
067         * Constructor.
068         * @param I the search image (of type {@link FloatProcessor})
069         * @param R the reference image (of type {@link FloatProcessor})
070         * @param params a parameter object (of type {@link LucasKanadeMatcher.Parameters})
071         */
072        LucasKanadeMatcher(FloatProcessor I, FloatProcessor R, Parameters params) {
073                this.I = I;     // search image
074                this.R = R;     // reference image
075                this.params = params;
076                wR = R.getWidth();
077                hR = R.getHeight();
078                xc = 0.5 * (wR - 1);
079                yc = 0.5 * (hR - 1);
080        }
081
082        /**
083         * Calculates the projective transformation that maps the reference image R (centered at the origin) to some other
084         * quad Q.
085         *
086         * @param Q an arbitrary quad (should be inside the search image I)
087         * @return the transformation from R's bounding rectangle to Q
088         */
089        public ProjectiveMapping2D getReferenceMappingTo(Pnt2d[] Q) {   // TODO: move to plugin where used
090                Pnt2d[] Rpts = this.getReferencePoints();
091                return ProjectiveMapping2D.fromPoints(Rpts, Q);
092        }
093        
094        /**
095         * Returns the corner points of the bounding rectangle of R, centered at the origin.
096         * @return the corner points of the bounding rectangle of R
097         */
098        public Pnt2d[] getReferencePoints() {
099                double xmin = -xc;
100                double xmax = -xc + wR - 1;
101                double ymin = -yc;
102                double ymax = -yc + hR - 1;
103                Pnt2d[] pts = new Pnt2d[4];
104                pts[0] = PntDouble.from(xmin, ymin);
105                pts[1] = PntDouble.from(xmax, ymin);
106                pts[2] = PntDouble.from(xmax, ymax);
107                pts[3] = PntDouble.from(xmin, ymax);
108                return pts;
109        }
110
111        /**
112         * Performs the full optimization on the given image pair (I, R).
113         *
114         * @param Tinit the transformation from the reference image R to the initial search patch, assuming that R is
115         * centered at the coordinate origin!
116         * @return the transformation to the best-matching patch in the search image I (again assuming that R is centered at
117         * the coordinate origin) or null if no match was found.
118         */
119        public ProjectiveMapping2D getMatch(ProjectiveMapping2D Tinit) {
120                ProjectiveMapping2D Tp = Tinit;
121                do {
122                        Tp = iterateOnce(Tp);           // to be implemented by sub-classes
123                } while (Tp != null && !hasConverged() && getIteration() < params.maxIterations);
124                return Tp;
125        }
126
127        /**
128         * Performs a single matching iteration on the given image pair (I, R).
129         *
130         * @param Tp the warp transformation from the reference image R to the initial search patch, assuming that R is
131         * centered at the coordinate origin!
132         * @return a new warp transformation (again assuming that R is centered at the coordinate origin) or null if the
133         * iteration was unsuccessful.
134         */
135        public abstract ProjectiveMapping2D iterateOnce(ProjectiveMapping2D Tp);
136
137        /**
138         * Checks if the matcher has converged.
139         * @return true if minimization criteria have been reached.
140         */
141        public abstract boolean hasConverged();
142
143        /**
144         * Measures the RMS intensity difference between the reference image R and the patch in the search image I defined
145         * by the current warp Tp.
146         *
147         * @return the RMS error under the current warp
148         */
149        public abstract double getRmsError();
150
151        /**
152         * Returns the current iteration number.
153         * @return the current iteration number
154         */
155        public int getIteration() {
156                return iteration;
157        }
158        
159        // ------------------------------------------------------------------------------------
160        
161        FloatProcessor gradientX(FloatProcessor fp) {
162                // Sobel-kernel for x-derivatives:
163            final float[] Hx = Matrix.multiply(1f/8, new float[] {
164                                -1, 0, 1,
165                            -2, 0, 2,
166                            -1, 0, 1
167                            });
168            FloatProcessor fpX = (FloatProcessor) fp.duplicate();
169            fpX.convolve(Hx, 3, 3);
170            return fpX;
171        }
172        
173        FloatProcessor gradientY(FloatProcessor fp) {
174                // Sobel-kernel for y-derivatives:
175                final float[] Hy = Matrix.multiply(1f/8, new float[] {
176                                                -1, -2, -1,
177                                                 0,  0,  0,
178                                                 1,  2,  1
179                                                 });
180            FloatProcessor fpY = (FloatProcessor) fp.duplicate();
181            fpY.convolve(Hy, 3, 3);
182            return fpY;
183        }
184        
185        // ------------------------- utility methods --------------------------
186        
187        /* We must be precise about the corner points of a rectangle:
188         * If rectangle r = <u, v, w, h>, all integer values, then the first
189         * top-left corner point (u, v) corresponds to the center of pixel
190         * (u, v). The rectangle covers w pixels horizontally, i.e., 
191         * pixel 0 = (u,v), 1 = (u+1,v), ..., w-1 = (u+w-1,v).
192         * Thus ROIs must have width/height > 1!
193         */
194        
195//      @Deprecated
196//      private Point[] getPoints(Rectangle2D r) {      // does -1 matter? YES!!! CORRECT!
197//              IJ.log("getpoints1:  r = " + r.toString());
198//              double x = r.getX();
199//              double y = r.getY();
200//              double w = r.getWidth();
201//              double h = r.getHeight();
202//              Point[] pts = new Point[4];
203//              pts[0] = new Point.Double(x, y);
204//              pts[1] = new Point.Double(x + w - 1, y);
205//              pts[2] = new Point.Double(x + w - 1, y + h - 1);
206//              pts[3] = new Point.Double(x, y + h - 1);
207//              //IJ.log("getpoints1:  p1-4 = " + pts[0] + ", " + pts[1] + ", " + pts[2] + ", " + pts[3]);
208//              return pts;
209//      }
210        
211        void showSteepestDescentImages(double[][][] S) {        // S[u][v][n]
212                String titlePrefix = "sd";
213                int w = S.length;
214                int h = S[0].length;
215                int n = S[0][0].length;
216                for (int i = 0; i < n; i++) {
217                        FloatProcessor sdip = new FloatProcessor(w, h);
218                        for (int u = 0; u < w; u++) {
219                                for (int v = 0; v < h; v++) {
220                                        sdip.setf(u, v, (float) S[u][v][i]);
221                                }
222                        }
223                        (new ImagePlus(titlePrefix + i, sdip)).show();
224                }
225        }
226        
227        // ported from ProjectiveMapping2D --------------------------------
228        
229        double[] getParameters(ProjectiveMapping2D map) {
230                double[][] A = map.getTransformationMatrix();
231                return new double[] {
232                                A[0][0]-1, A[0][1], A[1][0], A[1][1]-1, A[2][0], A[2][1], A[0][2], A[1][2]};
233                //return new double[] { a00 - 1, a01, a10, a11 - 1, a20, a21, a02, a12 };
234        }
235        
236        ProjectiveMapping2D toProjectiveMap(double[] param) {
237                if (param.length < 8) {
238                        throw new IllegalArgumentException("Affine mapping requires 8 parameters");
239                }
240                return new ProjectiveMapping2D(
241                                param[0] + 1,   param[1],        param[6],
242                                param[2],       param[3] + 1,    param[7],
243                                param[4],       param[5]             );
244        }
245        
246        // ---------------------
247        
248        double[] getParameters(AffineMapping2D map) {
249                double[][] A = map.getTransformationMatrix();
250                return new double[] { 
251                                A[0][0] - 1, A[0][1], A[1][0], A[1][1]-1, A[0][2], A[1][2]};
252                //return new double[] { a00 - 1, a01, a10, a11 - 1, a02, a12 };
253        }
254        
255        AffineMapping2D toAffineMap(double[] param) {
256                if (param.length < 6) {
257                        throw new IllegalArgumentException("Affine mapping requires 6 parameters");
258                }
259                return new AffineMapping2D(
260                                param[0] + 1, param[1],     param[4],
261                                param[2],     param[3] + 1, param[5]);
262        }
263        
264        // --------------------
265        
266        double[] getParameters(Translation2D map) {
267                double[][] A = map.getTransformationMatrix();
268//              double[] p = new double[] {a02, a12};
269                return new double[] {A[0][2], A[1][2]};
270        }
271        
272        Translation2D toTranslation(double[] p) {
273                if (p.length < 2) {
274                        throw new IllegalArgumentException("Translation requires 2 parameters");
275                }
276                return new Translation2D(p[0], p[1]);
277        }
278
279}