001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.image.matching.lucaskanade; 010 011import ij.IJ; 012import ij.process.FloatProcessor; 013import imagingbook.common.geometry.basic.Pnt2d; 014import imagingbook.common.geometry.basic.Pnt2d.PntDouble; 015import imagingbook.common.geometry.mappings.linear.ProjectiveMapping2D; 016import imagingbook.common.ij.IjUtils; 017import imagingbook.common.math.Matrix; 018 019/** 020 * Lucas-Kanade elastic "Inverse Compositional" matcher, as described in [1]. See Sec. 24.3 (Alg. 4.2) of [2] for 021 * additional details. 022 * <p> 023 * [1] Simon Baker and Iain Matthews, "Lucas-Kanade 20 Years On: A Unifying Framework: Part 1", CMU-RI-TR-02-16 (2002) 024 * <br> 025 * [2] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 026 * (2022). 027 * 028 * @author WB 029 * @version 2014/02/08 030 */ 031public class LucasKanadeInverseMatcher extends LucasKanadeMatcher { 032 033 private int n; // number of warp parameters 034 private float[][] Rx, Ry; // gradient of reference image 035 private double[][] Hi; // inverse of cumulated Hessian matrix 036 private double[][][] S; // S[u][u][n] = the steepest descent image for dimension n at pos. u,v (same size as R) 037 038 private double qmag = Double.MAX_VALUE; // magnitude of parameter difference vector 039 private double sqrError = Double.MAX_VALUE; // squared sum of differences between I and R 040 041 /** 042 * Constructor. 043 * @param I the search image (of type {@link FloatProcessor}). 044 * @param R the reference image (of type {@link FloatProcessor}) 045 * @param params a parameter object of type {@link LucasKanadeMatcher.Parameters}. 046 */ 047 public LucasKanadeInverseMatcher(FloatProcessor I, FloatProcessor R, Parameters params) { 048 super(I, R, params); 049 } 050 051 /** 052 * Constructor using default parameters. 053 * @param I the search image (of type {@link FloatProcessor}). 054 * @param R the reference image (of type {@link FloatProcessor}) 055 */ 056 public LucasKanadeInverseMatcher(FloatProcessor I, FloatProcessor R) { 057 this(I, R, new Parameters()); 058 } 059 060 private void initializeMatch(ProjectiveMapping2D Tinit) { 061 n = getParameters(Tinit).length; // number of transformation parameters 062 S = new double[wR][hR][]; // S[u][v] holds a double vector of length n 063 Rx = gradientX(R).getFloatArray(); // gradient of R 064 Ry = gradientY(R).getFloatArray(); 065 double[][] H = new double[n][n]; // cumulated Hessian matrix of size n x n (initially zero) 066 067 ProjectiveMapping2D Tp = Tinit; 068 069 for (int u = 0; u < wR; u++) { // for all coordinates (u,v) in R do 070 for (int v = 0; v < hR; v++) { 071// double[] x = {u - xc, v - yc}; // position w.r.t. the center of R 072 Pnt2d x = PntDouble.from(u - xc, v - yc); // position w.r.t. the center of R 073 double[] gradR = {Rx[u][v], Ry[u][v]}; 074 075 double[][] J = Tp.getJacobian(x); 076 077 double[] sx = Matrix.multiply(gradR, J); // column vector of length n (6) 078 079 S[u][v] = sx; // keep for use in main loop 080 double[][] Hxy = Matrix.outerProduct(sx, sx); 081 082 H = Matrix.add(H, Hxy); // cumulate the Hessian 083 } 084 } 085 086 Hi = Matrix.inverse(H); // inverse of Hessian 087 if (Hi == null) { 088 IJ.log("singular Hessian!"); 089 throw new RuntimeException("could not invert Hessian"); 090 } 091 092 iteration = 0; 093 094 if (params.showSteepestDescentImages) 095 showSteepestDescentImages(S); 096 if (params.showHessians) { 097 IjUtils.createImage("H", H).show(); 098 IjUtils.createImage("Hi", Matrix.inverse(H)).show(); 099 } 100 } 101 102 @Override 103 public ProjectiveMapping2D iterateOnce(ProjectiveMapping2D Tp) { 104 if (iteration < 0) { 105 initializeMatch(Tp); 106 } 107 iteration = iteration + 1; 108 double[] dp = new double[n]; // n-dim vector \delta_p = 0 109 sqrError = 0; 110 111 // for all positions (u,v) in R do 112 for (int u = 0; u < wR; u++) { 113 for (int v = 0; v < hR; v++) { 114 115 // get coordinate relative to center of R 116 Pnt2d x = PntDouble.from(u - xc, v - yc); 117 118 // warp I to I' (onto R) 119 Pnt2d xT = Tp.applyTo(x); // warp from x -> x' 120 121 // calculate pixel difference d for pos. (u,v) 122 double d = I.getInterpolatedValue(xT.getX(), xT.getY()) - R.getf(u, v); 123 sqrError = sqrError + d * d; 124 125 // multiply the pixel difference d with the corresponding steepest descent image sx 126 // and sum into dp: 127 double[] sx = S[u][v]; 128 dp = Matrix.add(dp, Matrix.multiply(d, sx)); 129 } 130 } 131 132 // estimate the parameter difference vector qopt: 133 double[] qopt = Matrix.multiply(Hi, dp); 134 if (params.debug) IJ.log("qopt = " + Matrix.toString(qopt)); 135 136 // measure the magnitude of the difference vector: 137 qmag = Matrix.normL2squared(qopt); 138 139 // Calculate the warp parameters p', such that T_p'(x) = T_p (T^-1_q (x), for any point x. 140 ProjectiveMapping2D Tqopt = toProjectiveMap(qopt); 141 ProjectiveMapping2D Tqopti = Tqopt.getInverse(); 142 return Tqopti.concat(Tp); 143 } 144 145 @Override 146 public boolean hasConverged() { 147 return (qmag < params.tolerance); 148 } 149 150 @Override 151 public double getRmsError() { 152 return Math.sqrt(sqrError); 153 } 154 155}