001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.image.matching.lucaskanade;
010
011import ij.process.FloatProcessor;
012import imagingbook.common.geometry.basic.Pnt2d;
013import imagingbook.common.geometry.basic.Pnt2d.PntDouble;
014import imagingbook.common.geometry.mappings.linear.ProjectiveMapping2D;
015import imagingbook.common.ij.IjUtils;
016import imagingbook.common.math.Matrix;
017
018/**
019 * Lucas-Kanade (forward-additive) matcher [1], as described in [2]. Also called the "forward-additive" algorithm. See
020 * Sec. 24.2 (Alg. 24.1) of [2] for additional details. This version assumes that the origin of R is at its center!
021 * <p>
022 * [1] B. D. Lucas and T. Kanade. "An iterative image registration technique with an application to stereo vision". In
023 * Proceedings of the 7th International Joint Conference on Artificial Intelligence IJCAI’81, pp. 674–679, Vancouver, BC
024 * (1981).
025 * <br>
026 * [2] Simon Baker and Iain Matthews, "Lucas-Kanade 20 Years On: A Unifying Framework: Part 1", CMU-RI-TR-02-16 (2002)
027 * <br>
028 * [3] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
029 * (2022).
030 *
031 * @author WB
032 * @version 2014/02/08
033 */
034public class LucasKanadeForwardMatcher extends LucasKanadeMatcher {
035        
036        private int n;                                                          // number of warp parameters
037        private FloatProcessor Ix, Iy;                          // gradient of the search image
038        private double qmag = Double.MAX_VALUE;         // magnitude of parameter difference vector
039        private double sqrError = Double.MAX_VALUE;     // squared sum of differences between I and R
040        private double[][][] S;         // S[u][u][n] = the steepest descent image for dimension n at pos. u,v (same size as R)
041
042        /**
043         * Constructor.
044         * @param I the search image (of type {@link FloatProcessor}).
045         * @param R the reference image (of type {@link FloatProcessor})
046         * @param params a parameter object of type  {@link LucasKanadeMatcher.Parameters}.
047         */
048        public LucasKanadeForwardMatcher(FloatProcessor I, FloatProcessor R, Parameters params) {
049                super(I, R, params);
050        }
051
052        /**
053         * Constructor using default parameters.
054         * @param I the search image (of type {@link FloatProcessor}).
055         * @param R the reference image (of type {@link FloatProcessor})
056         */
057        public LucasKanadeForwardMatcher(FloatProcessor I, FloatProcessor R) {
058                this(I, R, new Parameters());
059        }
060
061        @Override
062        public boolean hasConverged() {
063                return (qmag < params.tolerance);
064        }
065
066        @Override
067        public double getRmsError() {
068                return Math.sqrt(sqrError);
069        }
070
071        private void initializeMatch(ProjectiveMapping2D Tinit) {
072                n = getParameters(Tinit).length;
073                Ix = gradientX(I);
074                Iy = gradientY(I);
075                iteration = 0;
076        }
077
078        @Override
079        public ProjectiveMapping2D iterateOnce(ProjectiveMapping2D Tp) {
080                if (iteration < 0) {
081                        initializeMatch(Tp);
082                }
083                iteration = iteration + 1;
084                double[][] H = new double[n][n];        // n x n cumulated Hessian matrix
085                double[] dp = new double[n];            // n-dim vector \delta_p = 0
086                sqrError = 0;
087
088                if (params.showSteepestDescentImages) {
089                        S = new double[wR][hR][];               // S[u][v] holds a double vector of length n
090                }
091                
092                // for all positions (u,v) in R do
093                for (int u = 0; u < wR; u++) {
094                        for (int v = 0; v < hR; v++) {
095                                Pnt2d x = PntDouble.from(u - xc, v - yc);               // position w.r.t. the center of R
096                                Pnt2d xT = Tp.applyTo(x);               // warp x -> x'
097
098                                double gx = Ix.getInterpolatedValue(xT.getX(), xT.getY());      // interpolate the gradient at pos. xw
099                                double gy = Iy.getInterpolatedValue(xT.getX(), xT.getY());
100                                
101                                double[] G = new double[] {gx, gy};                             // interpolated gradient vector
102
103                                // Step 4: Evaluate the Jacobian of the warp W at position x
104                                double[][] J = Tp.getJacobian(x);
105
106                                // Step 5: compute the steepest descent image:
107                                double[] sx = Matrix.multiply(G, J); // I_steepest = gradI(xy) * dW/dp(xy)  is a n-dim vector
108
109                                if (params.showSteepestDescentImages && iteration == 1) {
110                                        S[u][v] = sx;
111                                }
112
113                                // Step 6: Update the Hessian matrix
114                                double[][] Hx = Matrix.outerProduct(sx, sx);
115                                H = Matrix.add(H, Hx);
116
117                                // Step 7: Compute sum_x [gradI*dW/dp]^T (R(x)-I(W(x;p))] = Isteepest^T * Exy]
118                                double d = R.getf(u, v) - I.getInterpolatedValue(xT.getX(), xT.getY());
119                                sqrError = sqrError + d * d;
120
121                                dp = Matrix.add(dp, Matrix.multiply(d, sx));
122                        }
123                }
124
125                if (params.showHessians && iteration == 1) {
126                        IjUtils.createImage("H", H).show();
127                        IjUtils.createImage("Hi", Matrix.inverse(H)).show();
128                }
129
130                // Step 8: Compute delta_p using Equation 10
131                //                      double[][] Hi = Matrix.invert(H);
132                //                      if (Hi == null) {
133                //                              IJ.log("could not invert Hessian matrix!");
134                //                              return null;
135                //                      }
136                // Step 9: update the parameter vector
137                //                      double[] dp = Matrix.multiply(Hi, S);
138
139                // Step 8/9 (alternative)
140                double[] qopt = Matrix.solve(H, dp);
141                if (qopt == null) {     // this should not happen
142                        throw new RuntimeException(this.getClass().getName() + ": Encountered singular Hessian matrix!");
143                        //return null;
144                }
145
146                double[] p = Matrix.add(getParameters(Tp), qopt);
147                qmag = Matrix.normL2squared(qopt);
148
149                if (params.showSteepestDescentImages && iteration == 1) {
150                        showSteepestDescentImages(S);
151                }
152
153//              return ProjectiveMapping2D.fromParameters(p);
154                return toProjectiveMap(p);
155        }
156}