001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.image.matching; 010 011import ij.process.ImageProcessor; 012 013/** 014 * <p> 015 * Instances of this class calculate an approximate distance transform of a given image which is assumed to be binary 016 * (pixel value 0 = background, non-zero = foreground). For the L2 norm, the resulting distances are only an 017 * approximation. See Sec. 23.2.2 (Alg. 23.2) of [1] for additional details. 018 * </p> 019 * <p> 020 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 021 * (2022). 022 * </p> 023 * 024 * @author WB 025 * @version 2022/09/16 026 */ 027public class DistanceTransform { 028 029 /** 030 * Enum type for different distance norms used to calculate distance transforms. 031 * 032 * @see DistanceTransform 033 */ 034 public enum DistanceType { 035 /** L1 distance (Manhattan distance) */ L1, 036 /** L2 distance (Euclidean distance) */ L2; 037 } 038 039 private final float[][] D; 040 041 /** 042 * Constructor using the default distance norm ({@link DistanceType#L2}). 043 * @param I the input image 044 */ 045 public DistanceTransform(ImageProcessor I) { 046 this(I, DistanceType.L2); 047 } 048 049 /** 050 * Constructor using the specified distance norm. 051 * @param I the input image 052 * @param norm the distance norm 053 */ 054 public DistanceTransform(ImageProcessor I, DistanceType norm) { 055 D = makeDistanceMap(I, norm); 056 } 057 058 // ----------------------------------------------------------------- 059 060 private float[][] makeDistanceMap(ImageProcessor I, DistanceType norm) { 061 float m1, m2; 062 switch (norm) { 063 case L1: 064 m1 = 1; m2 = 2; break; 065 case L2: 066 m1 = 1; m2 = (float) Math.sqrt(2); break; 067 default: 068 throw new IllegalArgumentException("unhandled norm " + norm); 069 } 070 071 final int M = I.getWidth(); 072 final int N = I.getHeight(); 073 final float[][] D = new float[M][N]; 074 float d0, d1, d2, d3; 075 076 // L->R pass: 077 for (int v = 0; v < N; v++) { 078 for (int u = 0; u < M; u++) { 079 if (I.get(u, v) != 0) { // a foreground pixel 080 D[u][v] = 0; 081 } 082 else { // a background pixel 083 d0 = d1 = d2 = d3 = Float.POSITIVE_INFINITY; 084 if (u > 0) { 085 d0 = m1 + D[u - 1][v]; 086 if (v > 0) { 087 d1 = m2 + D[u - 1][v - 1]; 088 } 089 } 090 if (v > 0) { 091 d2 = m1 + D[u][v - 1]; 092 if (u < M - 1) { 093 d3 = m2 + D[u + 1][v - 1]; 094 } 095 } 096 D[u][v] = min(d0, d1, d2, d3); 097 } 098 } 099 } 100 101 // R->L pass: 102 for (int v = N - 1; v >= 0; v--) { 103 for (int u = M - 1; u >= 0; u--) { 104 if (D[u][v] > 0) { // a background pixel 105 d0 = d1 = d2 = d3 = Float.POSITIVE_INFINITY; 106 if (u < M - 1) { 107 d0 = m1 + D[u + 1][v]; 108 if (v < N - 1) { 109 d1 = m2 + D[u + 1][v + 1]; 110 } 111 } 112 if (v < N - 1) { 113 d2 = m1 + D[u][v + 1]; 114 if (u > 0) { 115 d3 = m2 + D[u - 1][v + 1]; 116 } 117 } 118 D[u][v] = min(D[u][v], d0, d1, d2, d3); 119 } 120 } 121 } 122 return D; 123 } 124 125 private float min(float... a) { 126 float minVal = a[0]; 127 for (int i = 1; i < a.length; i++) { 128 if (a[i] < minVal) 129 minVal = a[i]; 130 } 131 return minVal; 132 } 133 134 /** 135 * Returns the distance map as a 2D float array with the same size as the original image. 136 * 137 * @return the 2D distance map. 138 */ 139 public float[][] getDistanceMap() { 140 return D; 141 } 142 143}