001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.image.matching; 011 012import ij.process.ImageProcessor; 013 014import static imagingbook.common.math.Arithmetic.sqr; 015import static java.lang.Math.sqrt; 016 017/** 018 * <p> 019 * Instances of this class perform matching on scalar-valued images based on the correlation coefficient. The "search" 020 * image I (to be searched for matches of the "reference" image R) is initially associated with the 021 * {@link CorrCoeffMatcher}. The assumption is, that the search image I is fixed and the matcher tries to match multiple 022 * reference images R. See Sec. 23.1.1 (Alg. 23.1) of [1] for additional details. 023 * </p> 024 * <p> 025 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 026 * (2022). 027 * </p> 028 * 029 * @author WB 030 * @version 2022/09/16 031 */ 032public class CorrCoeffMatcher { 033 034 private final float[][] fI; // search image (copied to a float array) 035 private final int wI, hI; // width/height of image 036 037 private float[][] fR; // reference image (copied to a float array) 038 private int wR, hR; // width/height of reference 039 040 // modified variables: 041 private int K; // number of pixels in reference image 042 private float meanR; // mean value of reference 043 private float varR; // square root of reference variance 044 045 /** 046 * Constructor, accepts an {@link ImageProcessor} instance. Color images are converted to grayscale. 047 * @param I the search image (to be matched to) 048 */ 049 public CorrCoeffMatcher(ImageProcessor I) { 050 this(I.getFloatArray()); 051 } 052 053 /** 054 * Constructor, accepts a 2D float array. 055 * @param fI the search image (to be matched to) 056 */ 057 public CorrCoeffMatcher(float[][] fI) { 058 this.fI = fI; 059 this.wI = fI.length; 060 this.hI = fI[0].length; 061 } 062 063 /** 064 * Matches the specified reference image R to the (fixed) search image I. Resulting score values are in [-1, 1], the 065 * score for the optimal match is +1. The returned score matrix has the size of the search image I reduced by the 066 * size of the reference image R. 067 * 068 * @param R a scalar-valued reference image 069 * @return a 2D array Q[r][s] of match scores in [-1,1] 070 */ 071 public float[][] getMatch(ImageProcessor R) { 072 return getMatch(R.getFloatArray()); 073 } 074 075 /** 076 * Matches the specified reference image R to the (fixed) search image I. Resulting score values are in [-1, 1], the 077 * score for the optimal match is +1. The returned score matrix has the size of the search image I reduced by the 078 * size of the reference image R. 079 * 080 * @param fR a scalar-valued reference image 081 * @return a 2D array Q[r][s] of match scores in [-1,1] 082 */ 083 public float[][] getMatch(float[][] fR) { 084 this.fR = fR; 085 this.wR = fR.length; 086 this.hR = fR[0].length; 087 this.K = wR * hR; 088 089 // calculate the mean and variance of R 090 float sumR = 0; 091 float sumR2 = 0; 092 for (int j = 0; j < hR; j++) { 093 for (int i = 0; i < wR; i++) { 094 float b = fR[i][j]; 095 sumR += b; 096 sumR2 += sqr(b); 097 } 098 } 099 100 this.meanR = sumR / K; 101 this.varR = (float) sqrt(sumR2 - K * sqr(meanR)); 102 103 float[][] C = new float[wI - wR + 1][hI - hR + 1]; 104 for (int r = 0; r < C.length; r++) { 105 for (int s = 0; s < C[r].length; s++) { 106 C[r][s] = getMatchValue(r, s); 107 } 108 } 109 this.fR = null; 110 return C; 111 } 112 113 private float getMatchValue(int r, int s) { 114 float sumI = 0, sumI2 = 0, sumIR = 0; 115 for (int j = 0; j < hR; j++) { 116 for (int i = 0; i < wR; i++) { 117 float a = fI[r + i][s + j]; 118 float b = fR[i][j]; 119 sumI += a; 120 sumI2 += sqr(a); 121 sumIR += a * b; 122 } 123 } 124 float meanI = sumI / K; 125 return (sumIR - K * meanI * meanR) / 126 (1f + (float) sqrt(sumI2 - K * sqr(meanI)) * varR); 127 // added 1 in denominator to handle flat image regions (w. zero variance) 128 } 129 130}