001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.histogram; 011 012import static imagingbook.common.math.Arithmetic.sqr; 013 014/** 015 * <p> 016 * This class defines static methods related to histograms. See Ch. 2 of [1] for additional details. 017 * </p> 018 * <p> 019 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 020 * (2022). 021 * </p> 022 * 023 * @author WB 024 * @version 2022/08/24 025 */ 026public abstract class HistogramUtils { 027 028 private HistogramUtils() { } 029 030 /** 031 * Calculates and returns the total population (sum of all bin counts) of a histogram. 032 * 033 * @param h a histogram 034 * @return the histogram's total count 035 */ 036 public static int count(int[] h) { 037 return count(h, 0, h.length - 1); 038 } 039 040 /** 041 * Calculates and returns the population (sum of bin counts) of a histogram over the specified range of indexes. The 042 * range is automatically clipped. 043 * 044 * @param h a histogram 045 * @param lo the lower index (inclusive) 046 * @param hi the upper index (inclusive) 047 * @return the population count 048 */ 049 public static int count(int[] h, int lo, int hi) { 050 if (lo < 0) lo = 0; 051 if (hi >= h.length) hi = h.length-1; 052 int cnt = 0; 053 for (int i = lo; i <= hi; i++) { 054 cnt += h[i]; 055 } 056 return cnt; 057 } 058 059 // ----------------------------------------------------------- 060 061 /** 062 * Returns the maximum bin value (count) of the given histogram. 063 * 064 * @param h a histogram 065 * @return the maximum bin value 066 */ 067 public static int max(int[] h) { 068 int hmax = -1; 069 for (int i = 0; i < h.length; i++) { 070 if (h[i] > hmax) 071 hmax = h[i]; 072 } 073 return hmax; 074 } 075 076 /** 077 * Returns the maximum bin value (count) of the given frequency distribution (histogram). 078 * 079 * @param h a histogram 080 * @return the maximum bin value 081 */ 082 public static double max(double[] h) { 083 double hmax = Double.NEGATIVE_INFINITY; 084 for (int i = 0; i < h.length; i++) { 085 if (h[i] > hmax) 086 hmax = h[i]; 087 } 088 return hmax; 089 } 090 091 // ----------------------------------------------------------- 092 093 /** 094 * Calculates and returns the cumulative histogram from a given histogram. 095 * 096 * @param h a histogram 097 * @return the cumulative histogram 098 */ 099 public static int[] cumulate(int[] h) { 100 final int K = h.length; 101 int[] C = new int[K]; 102 C[0] = h[0]; 103 for (int i = 1; i < K; i++) { 104 C[i] = C[i-1] + h[i]; 105 } 106 return C; 107 } 108 109 // ----------------------------------------------------------- 110 111 /** 112 * Calculates and returns the <em>probability distribution function</em> (pdf) for the given histogram. The 113 * resulting {@code double} array has the same length as the original histogram. Its values sum to 1. 114 * 115 * @param h a histogram 116 * @return the probability distribution function 117 */ 118 public static double[] pdf(int[] h) { 119 final int K = h.length; 120 final int n = count(h); // sum all histogram values 121 double[] p = new double[K]; 122 for (int i = 0; i < h.length; i++) { 123 p[i] = (double) h[i] / n; 124 } 125 return p; 126 } 127 128 /** 129 * Calculates and returns the <em>cumulative distribution function</em> (cdf) for the given histogram. The resulting 130 * {@code double} array has the same length as the original histogram. Its maximum value is 1. 131 * 132 * @param h a histogram 133 * @return the cumulative distribution function 134 */ 135 public static double[] cdf(int[] h) { 136 // returns the cumul. probability distribution function (cdf) for histogram h 137 final int K = h.length; 138 final int n = count(h); // sum all histogram values 139 double[] P = new double[K]; 140 long c = h[0]; 141 P[0] = (double) c / n; 142 for (int i = 1; i < K; i++) { 143 c = c + h[i]; 144 P[i] = (double) c / n; 145 } 146 return P; 147 } 148 149 // ----------------------------------------------------------- 150 151 /** 152 * Calculates and returns the intensity mean (average) of the distribution represented by the given histogram. 153 * 154 * @param h a histogram 155 * @return the mean intensity 156 */ 157 public static double mean(int[] h) { 158 return mean(h, 0, h.length - 1); 159 } 160 161 /** 162 * Calculates and returns the intensity mean (average) of the distribution represented by the given histogram, 163 * limited to the specified intensity range. The range is automatically clipped. 164 * 165 * @param h a histogram 166 * @param lo the lower index (inclusive) 167 * @param hi the upper index (inclusive) 168 * @return the mean intensity 169 */ 170 public static double mean(int[] h, int lo, int hi) { 171 if (lo < 0) 172 lo = 0; 173 if (hi >= h.length) 174 hi = h.length - 1; 175 long cnt = 0; 176 long sum = 0; 177 for (int i = lo; i <= hi; i++) { 178 cnt = cnt + h[i]; 179 sum = sum + i * h[i]; 180 } 181 if (cnt > 0) 182 return ((double) sum) / cnt; 183 else 184 return 0; 185 } 186 187 // ----------------------------------------------------------- 188 189 /** 190 * Calculates and returns the intensity variance (σ<sup>2</sup>) of the distribution represented by the given 191 * histogram. 192 * 193 * @param h a histogram 194 * @return the intensity variance 195 */ 196 public static double variance(int[] h) { 197 return variance(h, 0, h.length-1); 198 } 199 200 /** 201 * Calculates and returns the intensity variance (σ<sup>2</sup>) of the distribution represented by the given 202 * histogram, limited to the specified intensity range (fast version). The range is automatically clipped. 203 * 204 * @param h a histogram 205 * @param lo the lower index (inclusive) 206 * @param hi the upper index (inclusive) 207 * @return the intensity variance 208 */ 209 public static double variance(int[] h, int lo, int hi) { 210 if (lo < 0) 211 lo = 0; 212 if (hi >= h.length) 213 hi = h.length - 1; 214 long A = 0; 215 long B = 0; 216 int N = 0; 217 for (int i = lo; i <= hi; i++) { 218 int ni = h[i]; 219 A = A + (long) i * ni; 220 B = B + (long) i * i * ni; 221 N = N + ni; 222 } 223 224 if (N == 0) { 225 throw new IllegalArgumentException("empty histogram or range"); 226 } 227 228 return (B - (double) (A * A) / N) / N; 229 } 230 231 // This is a naive (slow) version, for testing only: 232 public static double varianceSlow(int[] h, int lo, int hi) { 233 if (lo < 0) 234 lo = 0; 235 if (hi >= h.length) 236 hi = h.length - 1; 237 final double mu = mean(h, lo, hi); 238 int N = 0; 239 double sum = 0; 240 for (int i = lo; i <= hi; i++) { 241 N = N + h[i]; 242 sum = sum + sqr(i - mu) * h[i]; 243 } 244 245 if (N == 0) { 246 throw new IllegalArgumentException("empty histogram or range"); 247 } 248 249 return sum / N; 250 } 251 252 // ----------------------------------------------------------- 253 254 /** 255 * Calculates and returns the intensity <em>median</em> of the distribution represented by the given histogram. 256 * 257 * @param h a histogram 258 * @return the intensity median 259 */ 260 public static int median(int[] h) { 261 final int K = h.length; 262 final int N = count(h); 263 final int m = N / 2; 264 int i = 0; 265 int sum = h[0]; 266 while (sum <= m && i < K) { 267 i++; 268 sum += h[i]; 269 } 270 return i; 271 } 272 273 // ----------------------------------------------------------- 274 275 /** 276 * Returns a normalized frequency distribution for the given histogram whose maximum entry is 1 ({@code int} 277 * version). Mainly intended for displaying histograms. 278 * 279 * @param h a histogram 280 * @return the max-normalized frequency distribution 281 */ 282 public static double[] normalizeMax(int[] h) { 283 // find the max histogram entry 284 final int max = max(h); 285 if (max == 0) { 286 throw new IllegalArgumentException("empty histogram"); 287 } 288 double[] hn = new double[h.length]; 289 double s = 1.0 / max; 290 for (int i = 0; i < h.length; i++) { 291 hn[i] = s * h[i]; 292 } 293 return hn; 294 } 295 296 /** 297 * Returns a normalized frequency distribution for the given histogram whose maximum entry is 1 ({@code double} 298 * version). Mainly intended for displaying histograms. 299 * 300 * @param h a histogram 301 * @return the max-normalized frequency distribution 302 */ 303 public static double[] normalizeMax(double[] h) { 304 // find max histogram entry 305 final double max = max(h); 306 if (max == 0) { 307 throw new IllegalArgumentException("empty histogram"); 308 } 309 double[] hn = new double[h.length]; 310 double s = 1.0 / max; 311 for (int i = 0; i < h.length; i++) { 312 hn[i] = s * h[i]; 313 } 314 return hn; 315 } 316 317 // ----------------------------------------------------------------- 318 319 /** 320 * Histogram matching. Given are two histograms: the histogram hA of the target image IA and a reference histogram 321 * hR, both of size K. The result is a discrete mapping f which, when applied to the target image, produces a new 322 * image with a distribution function similar to the reference histogram. 323 * 324 * @param hA histogram of the target image 325 * @param hR reference histogram (the same size as hA) 326 * @return a discrete mapping f to be applied to the values of a target image 327 */ 328 public static int[] matchHistograms (int[] hA, int[] hR) { 329 int K = hA.length; 330 double[] PA = HistogramUtils.cdf(hA); // get CDF of histogram hA 331 double[] PR = HistogramUtils.cdf(hR); // get CDF of histogram hR 332 int[] f = new int[K]; // pixel mapping function f() 333 334 // compute pixel mapping function f(): 335 for (int a = 0; a < K; a++) { 336 int j = K - 1; 337 do { 338 f[a] = j; 339 j--; 340 } while (j >= 0 && PA[a] <= PR[j]); 341 } 342 return f; 343 } 344 345 /** 346 * Histogram matching to a reference cumulative distribution function that is piecewise linear. 347 * 348 * @param hA histogram of the target image 349 * @param PR a piecewise linear reference cumulative distribution function ({@link PiecewiseLinearCdf}) 350 * @return a discrete mapping f to be applied to the values of a target image 351 * @see PiecewiseLinearCdf 352 * @see #matchHistograms(int[], int[]) 353 */ 354 public static int[] matchHistograms(int[] hA, PiecewiseLinearCdf PR) { 355 int K = hA.length; 356 double[] PA = HistogramUtils.cdf(hA); // get p.d.f. of histogram Ha 357 int[] f = new int[K]; // pixel mapping function f() 358 359 // compute pixel mapping function f(): 360 for (int a = 0; a < K; a++) { 361 double b = PA[a]; 362 f[a] = (int) Math.round(PR.getInverseCdf(b)); 363 } 364 return f; 365 } 366 367}