001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.mappings.nonlinear;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.mappings.Inversion;
013import imagingbook.common.geometry.mappings.Mapping2D;
014import imagingbook.common.math.Arithmetic;
015
016import static java.lang.Math.cos;
017import static java.lang.Math.exp;
018import static java.lang.Math.hypot;
019import static java.lang.Math.log;
020import static java.lang.Math.sin;
021
022/**
023 * <p>
024 * This class implements a 2D log-polar mapping transformation. Improved version (Version 2), maps radius [rmin,rmax] to
025 * [0,nr]). See Sec. 21.1.6 (Eq 21.71 - 21.74, Alg. 21.1) of [1] for additional details and examples.
026 * </p>
027 * <p>
028 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
029 * (2022).
030 * </p>
031 *
032 * @author WB
033 * @version 2022/11/16
034 */
035public class LogPolarMapping2 implements Mapping2D, Inversion {
036        
037        private static final double PI2 = 2 * Math.PI;
038        
039        private final double rmin;              // min. radius
040        private final double xc, yc;    // center point in source image
041        private final double c1, c2;    // pre-calculated constants
042        
043        /**
044         * Constructor.
045         * @param xc x-coordinate of center point in source image
046         * @param yc y-coordinate of center point in source image
047         * @param P number of radial steps
048         * @param Q number of angular steps
049         * @param rmax maximum radius
050         * @param rmin minimum radius
051         */
052        public LogPolarMapping2(double xc, double yc, int P, int Q, double rmax, double rmin) {
053                this.xc = xc;
054                this.yc = yc;
055                this.rmin = (rmin > 0) ? rmin : rmax / exp(2 * Math.PI * (P - 1) / Q);
056                this.c1 = P / log(rmax / rmin);
057                this.c2 = Q / PI2;
058        }
059                
060        // --------------------------------------------------------------------
061        
062        @Override
063        public Pnt2d applyTo(Pnt2d xy) {        // image -> log-polar
064                double dx = xy.getX() - xc;
065                double dy = xy.getY() - yc;
066                double r = hypot(dx, dy);               // = Math.sqrt(sqr(dx) + sqr(dy));
067                if (r < rmin) {
068                        throw new IllegalArgumentException("radius < rmin for xy = " + xy);     // this should not happen!
069                }
070                double rho = c1 * log(r / rmin);
071                double theta = Arithmetic.mod(Math.atan2(dy, dx), PI2); // theta in [0, 2 PI)
072                double omega = c2 * theta;
073                return Pnt2d.from(rho, omega);
074        }
075        
076        // --------------------------------------------------------------------
077        
078        @Override
079        public Mapping2D getInverse() {
080                return new Mapping2D() {        
081                        @Override
082                        public Pnt2d applyTo(Pnt2d rw) {        // log-polar -> image, rw = (rho, omega)
083                                double rho   = rw.getX();
084                                double omega = rw.getY();
085                                double r =  exp(rho / c1) * rmin;
086                                double theta = omega / c2;
087                                double x = xc + r * cos(theta);
088                                double y = yc + r * sin(theta);
089                                return Pnt2d.from(x, y);
090                        }
091                };
092        }
093        
094}