001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.geometry.mappings.nonlinear; 011 012import imagingbook.common.geometry.basic.Pnt2d; 013import imagingbook.common.geometry.basic.Pnt2d.PntDouble; 014import imagingbook.common.geometry.basic.Pnt2d.PntInt; 015import imagingbook.common.geometry.mappings.Mapping2D; 016import imagingbook.common.math.Matrix; 017 018/** 019 * <p> 020 * This class represents a bilinear transformation in 2D with 8 parameters a0, ..., a3, b0, ..., b3 of the form 021 * </p> 022 * <pre> 023 * x' = a0 * x + a1 * y + a2 * x * y + a3 024 * y' = b0 * x + b1 * y + b2 * x * y + b3</pre> 025 * <p> 026 * Note that this is a non-linear transformation because of the mixed term x * y. See Secs. 21.1.5 and 21.3.1 of [1] for 027 * details. 028 * </p> 029 * <p> 030 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 031 * (2022). 032 * </p> 033 * 034 * @author WB 035 */ 036public class BilinearMapping2D implements Mapping2D { 037 038 public final double a0, a1, a2, a3; 039 public final double b0, b1, b2, b3; 040 041 public BilinearMapping2D( 042 double a0, double a1, double a2, double a3, 043 double b0, double b1, double b2, double b3) { 044 this.a0 = a0; this.a1 = a1; this.a2 = a2; this.a3 = a3; 045 this.b0 = b0; this.b1 = b1; this.b2 = b2; this.b3 = b3; 046 } 047 048 /** 049 * Calculates and returns the bilinear mapping M between two point sets P, Q, with 4 points each, such that q_i = 050 * M(p_i). The inverse mapping is obtained by simply swapping the two point sets. 051 * 052 * @param P the first point sequence 053 * @param Q the second point sequence 054 * @return a new bilinear mapping 055 */ 056 public static BilinearMapping2D fromPoints(Pnt2d[] P, Pnt2d[] Q) { 057 //define column vectors x, y 058 double[] x = {Q[0].getX(), Q[1].getX(), Q[2].getX(), Q[3].getX()}; 059 double[] y = {Q[0].getY(), Q[1].getY(), Q[2].getY(), Q[3].getY()}; 060 // mount matrix M 061 double[][] M = new double[][] 062 {{P[0].getX(), P[0].getY(), P[0].getX() * P[0].getY(), 1}, 063 {P[1].getX(), P[1].getY(), P[1].getX() * P[1].getY(), 1}, 064 {P[2].getX(), P[2].getY(), P[2].getX() * P[2].getY(), 1}, 065 {P[3].getX(), P[3].getY(), P[3].getX() * P[3].getY(), 1}}; 066 double[] a = Matrix.solve(M, x); // solve x = M * a = x (a is unknown) 067 double[] b = Matrix.solve(M, y); // solve y = M * b = y (b is unknown) 068 double a1 = a[0]; double b1 = b[0]; 069 double a2 = a[1]; double b2 = b[1]; 070 double a3 = a[2]; double b3 = b[2]; 071 double a4 = a[3]; double b4 = b[3]; 072 return new BilinearMapping2D(a1, a2, a3, a4, b1, b2, b3, b4); 073 } 074 075 @Override 076 public Pnt2d applyTo(Pnt2d pnt) { 077 final double x = pnt.getX(); 078 final double y = pnt.getY(); 079 double xx = a0 * x + a1 * y + a2 * x * y + a3; 080 double yy = b0 * x + b1 * y + b2 * x * y + b3; 081 return PntDouble.from(xx, yy); 082 } 083 084 @Override 085 public String toString() { 086 return String.format( 087 "BilinearMapping[A = (%.3f, %.3f, %.3f, %.3f) / B = (%.3f, %.3f, %.3f, %.3f)]", 088 a0, a1, a2, a3, b0, b1, b2, b3); 089 } 090 091 // ------------------------------------------------------------------------ 092 093 // /** 094 // * For testing only. 095 // * @param args ignored 096 // */ 097 // public static void main(String[] args) { 098 // Pnt2d[] P = { 099 // PntInt.from(2,5), 100 // PntInt.from(4,6), 101 // PntInt.from(7,9), 102 // PntInt.from(5,9), 103 // }; 104 // 105 // Pnt2d[] Q = { 106 // PntInt.from(4,3), 107 // PntInt.from(5,2), 108 // PntInt.from(9,3), 109 // PntInt.from(7,5), 110 // }; 111 // 112 // BilinearMapping2D bm = fromPoints(P, Q); 113 // System.out.println("\nbilinear mapping = \n" + bm.toString()); 114 // 115 // for (int i = 0; i < P.length; i++) { 116 // Pnt2d Qi = bm.applyTo(P[i]); 117 // System.out.println(P[i].toString() + " -> " + Qi.toString()); 118 // } 119 // } 120 121 122}