001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.geometry.mappings.linear; 011 012import imagingbook.common.geometry.basic.Pnt2d; 013import imagingbook.common.geometry.basic.Pnt2d.PntDouble; 014import imagingbook.common.geometry.fitting.points.ProjectiveFit2d; 015import imagingbook.common.geometry.mappings.Jacobian; 016import imagingbook.common.math.Arithmetic; 017import imagingbook.common.math.Matrix; 018import imagingbook.common.math.PrintPrecision; 019 020/** 021 * <p> 022 * This class represents a projective transformation in 2D (also known as a "homography"). It can be specified uniquely 023 * by four pairs of corresponding points. It can be assumed that every instance of this class is indeed a projective 024 * mapping. See Secs. 21.1.4 and 21.3.1 of [1] for details. 025 * </p> 026 * <p> 027 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 028 * (2022). 029 * </p> 030 * 031 * @author WB 032 */ 033public class ProjectiveMapping2D extends LinearMapping2D implements Jacobian { 034 035 // static methods ----------------------------------------------------- 036 037 /** 038 * Creates a projective 2D mapping from two sequences of corresponding points. If 4 point pairs are specified, the 039 * mapping is exact, otherwise a minimum least-squares fit is calculated. 040 * 041 * @param P the source points 042 * @param Q the target points 043 * @return a new projective mapping for the two point sets 044 */ 045 public static ProjectiveMapping2D fromPoints(Pnt2d[] P, Pnt2d[] Q) { 046 ProjectiveFit2d fit = new ProjectiveFit2d(P, Q); 047 return new ProjectiveMapping2D(fit.getTransformationMatrix()); 048 } 049 050// /** 051// * Creates the most specific linear mapping from two sequences of corresponding 052// * 2D points. 053// * @param P first point sequence 054// * @param Q second point sequence 055// * @return a linear mapping derived from point correspondences 056// */ 057// public static ProjectiveMapping2D makeMapping(Point[] P, Point[] Q) { 058// int n = Math.min(P.length, Q.length); 059// if (n < 1) { 060// throw new IllegalArgumentException("cannot create a mapping from zero points"); 061// } 062// else if (n == 1) { 063// return new Translation2D(P[0], Q[0]); 064// } 065// else if (n == 2) { // TODO: similarity transformation? 066// throw new UnsupportedOperationException("makeMapping: don't know yet how to handle 2 points"); 067// } 068// else if (n == 3) { 069// return AffineMapping2D.fromPoints(P, Q); 070// } 071// else if (n == 4) { 072// return ProjectiveMapping2D.from4Points(P, Q); 073// } 074// else { // n > 4 (over-determined) 075// return ProjectiveMapping2D.fromNPoints(P, Q); 076// } 077// } 078 079// /** 080// * Creates the projective mapping from the unit square S to 081// * the arbitrary quadrilateral P, specified by four points. 082// * @param p0 point 0 083// * @param p1 point 1 084// * @param p2 point 2 085// * @param p3 point 3 086// * @return a new projective mapping 087// */ 088// public static ProjectiveMapping2D fromUnitSquareTo4Points(Point p0, Point p1, Point p2, Point p3) { 089// double x0 = p0.getX(), x1 = p1.getX(), x2 = p2.getX(), x3 = p3.getX(); 090// double y0 = p0.getY(), y1 = p1.getY(), y2 = p2.getY(), y3 = p3.getY(); 091// double S = (x1 - x2) * (y3 - y2) - (x3 - x2) * (y1 - y2); 092// if (Arithmetic.isZero(S)) { 093// throw new ArithmeticException("fromUnitSquareTo4Points(): division by zero!"); 094// } 095// double a20 = ((x0 - x1 + x2 - x3) * (y3 - y2) - (y0 - y1 + y2 - y3) * (x3 - x2)) / S; 096// double a21 = ((y0 - y1 + y2 - y3) * (x1 - x2) - (x0 - x1 + x2 - x3) * (y1 - y2)) / S; 097// double a00 = x1 - x0 + a20 * x1; 098// double a01 = x3 - x0 + a21 * x3; 099// double a02 = x0; 100// double a10 = y1 - y0 + a20 * y1; 101// double a11 = y3 - y0 + a21 * y3; 102// double a12 = y0; 103// return new ProjectiveMapping2D(a00, a01, a02, a10, a11, a12, a20, a21); 104// } 105 106// /** 107// * Creates a new projective mapping between arbitrary two quadrilaterals P, Q. 108// * @param p0 point 0 of source quad P 109// * @param p1 point 1 of source quad P 110// * @param p2 point 2 of source quad P 111// * @param p3 point 3 of source quad P 112// * @param q0 point 0 of target quad Q 113// * @param q1 point 1 of target quad Q 114// * @param q2 point 2 of target quad Q 115// * @param q3 point 3 of target quad Q 116// * @return a new projective mapping 117// */ 118// public static ProjectiveMapping2D from4Points( 119// Point p0, Point p1, Point p2, Point p3, 120// Point q0, Point q1, Point q2, Point q3) { 121// ProjectiveMapping2D T1 = ProjectiveMapping2D.fromUnitSquareTo4Points(p0, p1, p2, p3); 122// ProjectiveMapping2D T2 = ProjectiveMapping2D.fromUnitSquareTo4Points(q0, q1, q2, q3); 123// ProjectiveMapping2D T1i = T1.getInverse(); 124// return T1i.concat(T2); 125// } 126 127// /** 128// * Creates a new projective mapping between arbitrary two quadrilaterals P, Q. 129// * @param P source quad 130// * @param Q target quad 131// * @return a new projective mapping 132// */ 133// public static final ProjectiveMapping2D from4Points(Point[] P, Point[] Q) { 134// return ProjectiveMapping2D.from4Points(P[0], P[1], P[2], P[3], Q[0], Q[1], Q[2], Q[3]); 135// } 136 137// /** 138// * Maps between n > 4 point pairs, finds a least-squares solution 139// * for the homography parameters. 140// * NOTE: this is UNFINISHED code! check against DLT estimation of homography 141// * @param P sequence of points (source) 142// * @param Q sequence of points (target) 143// * @return a new projective mapping 144// */ 145// public static ProjectiveMapping2D fromNPoints(Point[] P, Point[] Q) { 146// final int n = P.length; 147// if (n < 4) { 148// throw new IllegalArgumentException(ProjectiveMapping2D.class.getName() + ": fromNPoints() needs at least 4 points pairs"); 149// } 150// double[] ba = new double[2 * n]; 151// double[][] Ma = new double[2 * n][]; 152// for (int i = 0; i < n; i++) { 153// double x = P[i].getX(); 154// double y = P[i].getY(); 155// double u = Q[i].getX(); 156// double v = Q[i].getY(); 157// ba[2 * i + 0] = u; 158// ba[2 * i + 1] = v; 159// Ma[2 * i + 0] = new double[] { x, y, 1, 0, 0, 0, -u * x, -u * y }; 160// Ma[2 * i + 1] = new double[] { 0, 0, 0, x, y, 1, -v * x, -v * y }; 161// } 162// 163// RealMatrix M = MatrixUtils.createRealMatrix(Ma); 164// RealVector b = MatrixUtils.createRealVector(ba); 165// DecompositionSolver solver = new SingularValueDecomposition(M).getSolver(); 166// RealVector h = solver.solve(b); 167// double a00 = h.getEntry(0); 168// double a01 = h.getEntry(1); 169// double a02 = h.getEntry(2); 170// double a10 = h.getEntry(3); 171// double a11 = h.getEntry(4); 172// double a12 = h.getEntry(5); 173// double a20 = h.getEntry(6); 174// double a21 = h.getEntry(7); 175// return new ProjectiveMapping2D(a00, a01, a02, a10, a11, a12, a20, a21); 176// } 177 178 // constructors ----------------------------------------------------- 179 180 /** 181 * Creates the identity mapping. 182 */ 183 public ProjectiveMapping2D() { 184 super(); 185 } 186 187 /** 188 * Creates a projective mapping from a transformation matrix A, of arbitrary size. All relevant elements of A are 189 * inserted into actual 3x3 transformation matrix, except element (2,2) which is ignored and always set to 1 (to 190 * keep the transformation projective). If A is larger than 3 x 3, the remaining elements are ignored. 191 * 192 * @param A a transformation matrix of arbitrary size 193 */ 194 public ProjectiveMapping2D(double[][] A) { 195 //this(new LinearMapping2D(A)); 196 super(extractProjectiveMatrix(A)); 197 } 198 199 private static double[][] extractProjectiveMatrix(double[][] A) { 200 double[][] M = Matrix.idMatrix(3); 201 final int m = Math.min(3, A.length); // max. 3 rows 202 for (int i = 0; i < m; i++) { 203 final int n = Math.min(3, A[i].length); // max. 3 columns 204 for (int j = 0; j < n; j++) { 205 M[i][j] = A[i][j]; 206 } 207 } 208 M[2][2] = 1; 209 return M; 210 } 211 212 213 /** 214 * Creates a projective mapping from the specified matrix elements. 215 * 216 * @param a00 matrix element A_00 217 * @param a01 matrix element A_01 218 * @param a02 matrix element A_02 219 * @param a10 matrix element A_10 220 * @param a11 matrix element A_11 221 * @param a12 matrix element A_12 222 * @param a20 matrix element A_20 223 * @param a21 matrix element A_21 224 */ 225 public ProjectiveMapping2D( 226 double a00, double a01, double a02, 227 double a10, double a11, double a12, 228 double a20, double a21) { 229 super(a00, a01, a02, a10, a11, a12, a20, a21, 1); 230 } 231 232 /** 233 * Creates a projective mapping from any linear mapping. The transformation matrix gets normalized to a22 = 1. 234 * 235 * @param m a linear mapping 236 */ 237 public ProjectiveMapping2D(LinearMapping2D m) { 238 this(m.normalize()); 239 } 240 241 /** 242 * Creates a projective mapping from an existing instance. 243 * @param m a projective mapping 244 */ 245 public ProjectiveMapping2D(ProjectiveMapping2D m) { 246 //this(m.getTransformationMatrix()); 247 this(m.a00, m.a01, m.a02, m.a10, m.a11, m.a12, m.a20, m.a21); 248 } 249 250 // ---------------------------------------------------------- 251 252 /** 253 * Concatenates this mapping A with another linear mapping B and returns a new mapping C, such that C(x) = B(A(x)). 254 * 255 * @param B the second mapping 256 * @return the concatenated mapping 257 */ 258 public ProjectiveMapping2D concat(ProjectiveMapping2D B) { 259 LinearMapping2D C = LinearMapping2D.concatenate(B, this); 260 return new ProjectiveMapping2D(C); 261 } 262 263 /** 264 * {@inheritDoc} 265 * @return a new projective mapping 266 */ 267 @Override 268 public ProjectiveMapping2D duplicate() { 269 return new ProjectiveMapping2D(this); 270 } 271 272 /** 273 * {@inheritDoc} Note that the inverse A' of a projective transformation matrix A is again a linear transformation 274 * but its a'2' element is generally not 1. Scaling A' to A'' = A' / a22' yields a projective transformation that 275 * reverses A. While A * A' = I, the result of A * A'' is a scaled identity matrix. 276 * 277 * @return the inverse projective transformation 278 */ 279 @Override 280 public ProjectiveMapping2D getInverse() { 281 return new ProjectiveMapping2D(super.getInverse()); 282 } 283 284 @Override 285 public double[][] getJacobian(Pnt2d xy) { 286 // see Baker 2003 "20 Years" Part 1, Eq. 99 (p. 46) 287 final double x = xy.getX(); 288 final double y = xy.getY(); 289 final double a = a00 * x + a01 * y + a02; // = alpha 290 final double b = a10 * x + a11 * y + a12; // = beta 291 final double c = a20 * x + a21 * y + 1; // = gamma 292 if (Arithmetic.isZero(c)) { 293 throw new ArithmeticException("getJacobian(): division by zero!"); 294 } 295 final double cc = c * c; 296 return new double[][] 297 {{x/c, y/c, 0, 0, -(x*a)/cc, -(y*a)/cc, 1/c, 0 }, 298 {0, 0, x/c, y/c, -(x*b)/cc, -(y*b)/cc, 0, 1/c}}; 299 } 300 301 // ----------------------------------------------------------------- 302 303 /** 304 * For testing only. 305 * @param args ignored 306 */ 307 public static void main(String[] args) { 308 PrintPrecision.set(6); 309 310 // book example: 311 Pnt2d[] P = { 312 PntDouble.from(2, 5), 313 PntDouble.from(4, 6), 314 PntDouble.from(7, 9), 315 PntDouble.from(5, 9), 316 PntDouble.from(5.2, 9.1) // 5 points, overdetermined! 317 }; 318 319 Pnt2d[] Q = { 320 PntDouble.from(4, 3), 321 PntDouble.from(5, 2), 322 PntDouble.from(9, 3), 323 PntDouble.from(7, 5), 324 PntDouble.from(7, 4.9) // 5 points, overdetermined! 325 }; 326 327 ProjectiveMapping2D pm = ProjectiveMapping2D.fromPoints(P, Q); 328 329 System.out.println("\nprojective mapping = \n" + pm.toString()); 330 331 for (int i = 0; i < P.length; i++) { 332 Pnt2d Bi = pm.applyTo(P[i]); 333 System.out.println(P[i].toString() + " -> " + Bi.toString()); 334 } 335 336 System.out.println("pm is of class " + pm.getClass().getName()); 337 ProjectiveMapping2D pmi = pm.getInverse(); 338 pmi = pmi.normalize(); 339 System.out.println("\ninverse projective mapping (normalized) = \n" + pmi.toString()); 340 341 for (int i = 0; i < Q.length; i++) { 342 Pnt2d Ai = pmi.applyTo(Q[i]); 343 System.out.println(Q[i].toString() + " -> " + Ai.toString()); 344 } 345 346 ProjectiveMapping2D testId = pm.concat(pmi); 347 System.out.println("\ntest: should be a scaled identity matrix: = \n" + testId.toString()); 348 } 349 /* 350 projective mapping = 351 {{-0.732424, 1.208712, 0.244379}, 352 {-1.702388, 1.725545, -1.654658}, 353 {-0.206047, 0.123181, 1.000000}} 354 Point[2,000, 5,000] -> Point[4,007, 2,964] 355 Point[4,000, 6,000] -> Point[4,992, 2,065] 356 Point[7,000, 9,000] -> Point[8,999, 2,939] 357 Point[5,000, 9,000] -> Point[6,918, 4,973] 358 Point[5,200, 9,100] -> Point[7,084, 4,950] 359 pm is of class imagingbook.pub.geometry.mappings.linear.ProjectiveMapping2D 360 361 inverse projective mapping (normalized) = 362 {{2.430345, -1.484645, -3.050507}, 363 {2.573894, -0.859176, -2.050649}, 364 {0.183712, -0.200073, 1.000000}} 365 Point[4,000, 3,000] -> Point[1,954, 4,995] 366 Point[5,000, 2,000] -> Point[4,038, 5,993] 367 Point[9,000, 3,000] -> Point[6,998, 9,028] 368 Point[7,000, 5,000] -> Point[5,086, 9,078] 369 Point[7,000, 4,900] -> Point[5,122, 9,005] 370 371 test: should be a scaled identity matrix: = 372 {{1.000000, -0.000000, -0.000000}, 373 {0.000000, 1.000000, -0.000000}, 374 {0.000000, 0.000000, 1.000000}} 375 */ 376}