001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009
010package imagingbook.common.geometry.mappings.linear;
011
012import imagingbook.common.geometry.basic.Pnt2d;
013import imagingbook.common.geometry.basic.Pnt2d.PntDouble;
014import imagingbook.common.geometry.mappings.Inversion;
015import imagingbook.common.geometry.mappings.Mapping2D;
016import imagingbook.common.math.Arithmetic;
017import imagingbook.common.math.Matrix;
018
019/**
020 * <p>
021 * This class represents an arbitrary linear transformation in 2D. Instances of this class and any subclass are
022 * immutable. See Secs. 21.1 and 21.3 of [1] for details.
023 * </p>
024 * <p>
025 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
026 * (2022).
027 * </p>
028 */
029public class LinearMapping2D implements Mapping2D, Inversion {
030        
031        protected final double 
032                a00, a01, a02,
033                a10, a11, a12,
034                a20, a21, a22;
035
036        //  constructors -----------------------------------------------------
037        
038        /**
039         * Constructor, creates a new identity mapping.
040         */
041        public LinearMapping2D() {
042                a00 = 1; a01 = 0; a02 = 0;
043                a10 = 0; a11 = 1; a12 = 0;
044                a20 = 0; a21 = 0; a22 = 1;
045        }
046
047        /**
048         * Creates a linear mapping from a transformation matrix of arbitrary size (may be even empty). The actual
049         * transformation matrix is formed by inserting the given matrix into a 3x3 identity matrix starting at position
050         * (0,0).
051         *
052         * @param A a matrix of arbitrary size
053         */
054        public LinearMapping2D(double[][] A) {
055                double[][] M = extract3x3Matrix(A);
056                a00 = M[0][0]; a01 = M[0][1]; a02 = M[0][2];
057                a10 = M[1][0]; a11 = M[1][1]; a12 = M[1][2];
058                a20 = M[2][0]; a21 = M[2][1]; a22 = M[2][2];
059        }
060
061        /**
062         * Inserts the given matrix into a new 3x3 identity matrix, starting at element (0,0). All elements outside 3x3 are
063         * ignored.
064         *
065         * @param A the original matrix
066         * @return a 3x3 matrix
067         */
068        private static double[][] extract3x3Matrix(double[][] A) {
069                double[][] M = Matrix.idMatrix(3);
070                final int m = Math.min(3, A.length);    // max. 3 rows
071                for (int i = 0; i < m; i++) {
072                        final int n = Math.min(3, A[i].length); // max. 3 columns
073                        for (int j = 0; j < n; j++) {
074                                M[i][j] = A[i][j];
075                        }
076                }
077                return M;
078        }
079
080        /**
081         * Creates an arbitrary linear mapping from the specified matrix elements.
082         *
083         * @param a00 matrix element A_00
084         * @param a01 matrix element A_01
085         * @param a02 matrix element A_02
086         * @param a10 matrix element A_10
087         * @param a11 matrix element A_11
088         * @param a12 matrix element A_12
089         * @param a20 matrix element A_20
090         * @param a21 matrix element A_21
091         * @param a22 matrix element A_22
092         */
093        public LinearMapping2D (
094                        double a00, double a01, double a02, 
095                        double a10, double a11, double a12,
096                        double a20, double a21, double a22) {
097                this.a00 = a00;  this.a01 = a01;  this.a02 = a02;
098                this.a10 = a10;  this.a11 = a11;  this.a12 = a12;
099                this.a20 = a20;  this.a21 = a21;  this.a22 = a22;
100        }
101
102        /**
103         * Creates a new linear mapping from an existing linear mapping.
104         *
105         * @param lm a given linear mapping
106         */
107        public LinearMapping2D (LinearMapping2D lm) {
108                this(lm.getTransformationMatrix());
109        }
110        
111        // ----------------------------------------------------------
112
113        /**
114         * Scales the transformation matrix such that a22 becomes 1. Any linear mapping can be normalized and thereby be
115         * converted to a projective mapping (see {@link ProjectiveMapping2D}.
116         *
117         * @return the normalized linear mapping (i.e., a projective mapping)
118         */
119        public ProjectiveMapping2D normalize() {
120                if (Arithmetic.isZero(Math.abs(a22))) {
121                        throw new ArithmeticException("Zero value in a22, cannot normalize linear mapping!");
122                }
123                double b00 = a00/a22;   double b01 = a01/a22;   double b02 = a02/a22;
124                double b10 = a10/a22;   double b11 = a11/a22;   double b12 = a12/a22;
125                double b20 = a20/a22;   double b21 = a21/a22;
126                return new ProjectiveMapping2D(b00, b01, b02, b10, b11, b12, b20, b21);
127        }
128        
129        // ----------------------------------------------------------
130        
131        @Override
132        public Pnt2d applyTo(Pnt2d pnt) {
133                final double x = pnt.getX();
134                final double y = pnt.getY();
135                final double h =  (a20 * x + a21 * y + a22);
136                double x1 = (a00 * x + a01 * y + a02) / h;
137                double y1 = (a10 * x + a11 * y + a12) / h;
138                return PntDouble.from(x1, y1);
139        }
140        
141        /**
142         * Calculates and returns the inverse mapping.
143         */
144        @Override
145        public LinearMapping2D getInverse() {
146                // System.out.println("LinearMapping getInverse()");
147                double[][] ai = Matrix.inverse(this.getTransformationMatrix());
148                return new LinearMapping2D(ai);
149        }
150
151        /**
152         * Concatenates this mapping A with another linear mapping B and returns a new mapping C, such that C(x) = B(A(x)).
153         *
154         * @param B the second mapping
155         * @return the concatenated mapping
156         */
157        public LinearMapping2D concat(LinearMapping2D B) {
158                double[][] C = Matrix.multiply(B.getTransformationMatrix(), this.getTransformationMatrix());
159                return new LinearMapping2D(C);
160        }
161
162        /**
163         * Concatenates a sequence of linear mappings AA = (A1, A2, ..., An), with the result A(x) = A1(A2(...(An(x))...)).
164         * Thus, the mapping An is applied first and A1 last, with the associated transformation matrix a = a1 * a2 * ... *
165         * an. If AA is empty, the identity mapping is returned. If AA contains only a single mapping, a copy of this
166         * mapping is returned.
167         *
168         * @param AA a (possibly empty) sequence of linear transformations
169         * @return the concatenated linear transformation
170         */
171        public static LinearMapping2D concatenate(LinearMapping2D... AA) {
172                if (AA.length == 0) {
173                        return new LinearMapping2D();   // identity
174                }
175                else {
176                        double[][] a = AA[0].getTransformationMatrix();
177                        for (int i = 1; i < AA.length; i++) {
178                                a = Matrix.multiply(a, AA[i].getTransformationMatrix());
179                        }
180                        return new LinearMapping2D(a);
181                }
182        }
183        
184        /**
185         * Retrieves the transformation matrix for this mapping.
186         * @return the 3x3 transformation matrix
187         */
188        public double[][] getTransformationMatrix() {
189                return new double[][]
190                                {{a00, a01, a02},
191                                 {a10, a11, a12},
192                                 {a20, a21, a22}};
193        }
194
195        /**
196         * Returns a copy of this mapping.
197         * @return a new mapping of the same type
198         */
199        public LinearMapping2D duplicate() {
200                return new LinearMapping2D(this);
201        }
202
203        @Override
204        public String toString() {
205                return Matrix.toString(getTransformationMatrix());
206        }
207        
208        // -----------------------------------------------------------
209        
210//      /**
211//       * For testing only.
212//       * @param args ignored
213//       */
214//      public static void main(String[] args) {
215//              PrintPrecision.set(6);
216//              double[][] A = 
217//                              {{-1.230769, 2.076923, -1.769231}, 
218//                              {-2.461538, 2.615385, -3.538462}, 
219//                              {-0.307692, 0.230769, 1.000000}};
220//              System.out.println("A = " + Matrix.toString(A));
221//              
222//              double[][] Ai = Matrix.inverse(A);
223//              System.out.println("Ai = " + Matrix.toString(Ai));
224//              
225//              double[][] I = Matrix.multiply(A, Ai);
226//              System.out.println("\ntest: should be the  identity matrix: = \n" + Matrix.toString(I));
227//              
228//              ProjectiveMapping2D pA = (new LinearMapping2D(A)).normalize();
229//              System.out.println("mapping pA = \n" + pA.toString());
230//              
231//              ProjectiveMapping2D AA1 = pA.concat(pA);
232//              System.out.println("mapping AA1 = \n" + AA1.toString());
233//              
234//              ProjectiveMapping2D AA2 = LinearMapping2D.concatenate(pA, pA).normalize();
235//              System.out.println("mapping AA1 = \n" + AA2.toString());
236//      }
237
238
239        
240}
241
242
243
244