001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009 010package imagingbook.common.geometry.mappings.linear; 011 012import imagingbook.common.geometry.basic.Pnt2d; 013import imagingbook.common.geometry.basic.Pnt2d.PntDouble; 014import imagingbook.common.geometry.fitting.points.AffineFit2d; 015import imagingbook.common.math.Arithmetic; 016import imagingbook.common.math.Matrix; 017 018/** 019 * <p> 020 * This class represents an affine transformation in 2D, which can be defined by three pairs of corresponding points. It 021 * can be assumed that every instance of this class is indeed an affine mapping. Instances are immutable. See Secs. 022 * 21.1.3 and 21.3.1 of [1] for details. 023 * </p> 024 * <p> 025 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 026 * (2022). 027 * </p> 028 * 029 * @author WB 030 */ 031public class AffineMapping2D extends ProjectiveMapping2D { 032 033 /** 034 * Creates an affine 2D mapping from two sequences of corresponding points. If 3 point pairs are specified, the 035 * mapping is exact, otherwise a minimum least-squares fit is calculated. 036 * 037 * @param P the source points 038 * @param Q the target points 039 * @return a new {@link AffineMapping2D} instance for the two point sets 040 */ 041 public static AffineMapping2D fromPoints(Pnt2d[] P, Pnt2d[] Q) { 042 if (P.length != Q.length) { 043 throw new IllegalArgumentException("point sets P, Q must have the same size"); 044 } 045 if (P.length < 3) { 046 throw new IllegalArgumentException("at least 3 point pairs are required"); 047 } 048 if (P.length == 3) { 049 // exact fit 050 return fromPoints(P[0], P[1], P[2], Q[0], Q[1], Q[2]); 051 } 052 else { 053 // minimum least-squares fit 054 AffineFit2d fit = new AffineFit2d(P, Q); 055 return new AffineMapping2D(fit.getTransformationMatrix()); 056 } 057 } 058 059 /** 060 * <p> 061 * Creates an affine mapping from 3 pairs of corresponding 2D points (p0, p1, p2) → (q0, q1, q2). The solution 062 * is found in closed form (see [1], Sec. 21.1.3, eq. 21.31). 063 * </p> 064 * <p> 065 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, 066 * Springer (2022). 067 * </p> 068 * 069 * @param p0 point 1 of source triangle A 070 * @param p1 point 2 of source triangle A 071 * @param p2 point 3 of source triangle A 072 * @param q0 point 1 of source triangle B 073 * @param q1 point 2 of source triangle B 074 * @param q2 point 3 of source triangle B 075 * @return a new {@link AffineMapping2D} instance 076 */ 077 public static AffineMapping2D fromPoints(Pnt2d p0, Pnt2d p1, Pnt2d p2, Pnt2d q0, Pnt2d q1, Pnt2d q2) { 078 final double px0 = p0.getX(), px1 = p1.getX(), px2 = p2.getX(); 079 final double py0 = p0.getY(), py1 = p1.getY(), py2 = p2.getY(); 080 final double qx0 = q0.getX(), qx1 = q1.getX(), qx2 = q2.getX(); 081 final double qy0 = q0.getY(), qy1 = q1.getY(), qy2 = q2.getY(); 082 083 final double d = px0 * (py2 - py1) + px1 * (py0 - py2) + px2 * (py1 - py0); 084 if (Arithmetic.isZero(d)) { 085 throw new ArithmeticException("affine mapping is undefined (d=0)"); 086 } 087 double a00 = (py0 * (qx1 - qx2) + py1 * (qx2 - qx0) + py2 * (qx0 - qx1)) / d; 088 double a01 = (px0 * (qx2 - qx1) + px1 * (qx0 - qx2) + px2 * (qx1 - qx0)) / d; 089 double a10 = (py0 * (qy1 - qy2) + py1 * (qy2 - qy0) + py2 * (qy0 - qy1)) / d; 090 double a11 = (px0 * (qy2 - qy1) + px1 * (qy0 - qy2) + px2 * (qy1 - qy0)) / d; 091 092 double a02 = (px0*(py2*qx1-py1*qx2) + px1*(py0*qx2-py2*qx0) + px2*(py1*qx0-py0*qx1)) / d; 093 double a12 = (px0*(py2*qy1-py1*qy2) + px1*(py0*qy2-py2*qy0) + px2*(py1*qy0-py0*qy1)) / d; 094 095 return new AffineMapping2D(a00, a01, a02, a10, a11, a12); 096 } 097 098// /** 099// * Creates an affine mapping from an arbitrary 2D triangle A to another triangle B. 100// * @param A the first triangle 101// * @param B the second triangle 102// * @return a new affine mapping 103// * @deprecated 104// */ 105// public static AffineMapping2D from3Points(Point[] A, Point[] B) { 106// return AffineMapping2D.from3Points(A[0], A[1], A[2], B[0], B[1], B[2]); 107// } 108 // --------------------------------------------------------------------------- 109 110 /** 111 * Creates the identity mapping. 112 */ 113 public AffineMapping2D() { 114 super(); 115 } 116 117 /** 118 * Creates a linear mapping from a transformation matrix A, which must be at least of size 2 x 3. The elements of A 119 * are copied into a 3x3 identity matrix. If A is larger than 2 x 3, the remaining elements are ignored. 120 * 121 * @param A a 2x3 (or larger) matrix 122 */ 123 public AffineMapping2D(double[][] A) { 124 //super(A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2], 0, 0); 125 super(extractAffineMatrix(A)); 126 } 127 128 private static double[][] extractAffineMatrix(double[][] A) { 129 double[][] M = Matrix.idMatrix(3); 130 final int m = Math.min(2, A.length); // max. 2 rows 131 for (int i = 0; i < m; i++) { 132 final int n = Math.min(3, A[i].length); // max. 3 columns 133 for (int j = 0; j < n; j++) { 134 M[i][j] = A[i][j]; 135 } 136 } 137 return M; 138 } 139 140 /** 141 * Creates an affine mapping from the specified matrix elements. 142 * 143 * @param a00 matrix element A_00 144 * @param a01 matrix element A_01 145 * @param a02 matrix element A_02 146 * @param a10 matrix element A_10 147 * @param a11 matrix element A_11 148 * @param a12 matrix element A_12 149 */ 150 public AffineMapping2D ( 151 double a00, double a01, double a02, 152 double a10, double a11, double a12) { 153 super(a00, a01, a02, a10, a11, a12, 0, 0); 154 } 155 156 /** 157 * Creates a new affine mapping from an existing affine mapping. 158 * @param m an affine mapping 159 */ 160 public AffineMapping2D(AffineMapping2D m) { 161 this(m.a00, m.a01, m.a02, m.a10, m.a11, m.a11); 162 } 163 164 // ---------------------------------------------------------- 165 166 167 /** 168 * Checks if the given linear mapping could be affine, i.e. if the bottom row of its transformation matrix is (0, 0, 169 * 1). Note that this is a necessary but not sufficient requirement. The threshold {@link Arithmetic#EPSILON_DOUBLE} 170 * is used in this check. 171 * 172 * @param map a linear mapping 173 * @return true if the mapping could be affine 174 */ 175 public static boolean isAffine(LinearMapping2D map) { 176 final double tol = Arithmetic.EPSILON_DOUBLE; // max. deviation for 0/1 values 177 if (Math.abs(map.a20) > tol) return false; 178 if (Math.abs(map.a21) > tol) return false; 179 if (Math.abs(map.a22 - 1.0) > tol) return false; 180 return true; 181 } 182 183 /** 184 * Concatenates this mapping A with another affine mapping B and returns a new mapping C, such that C(x) = B(A(x)). 185 * 186 * @param B the second mapping 187 * @return the concatenated affine mapping 188 */ 189 public AffineMapping2D concat(AffineMapping2D B) { // use some super method instead? 190 double[][] C = Matrix.multiply(B.getTransformationMatrix(), this.getTransformationMatrix()); 191 return new AffineMapping2D(C[0][0], C[0][1], C[0][2], C[1][0], C[1][1], C[1][2]); 192 } 193 194 @Override // more efficient than generic version 195 public Pnt2d applyTo(Pnt2d pnt) { 196 final double x = pnt.getX(); 197 final double y = pnt.getY(); 198 double x1 = (a00 * x + a01 * y + a02); 199 double y1 = (a10 * x + a11 * y + a12); 200 return PntDouble.from(x1, y1); 201 } 202 203 /** 204 * {@inheritDoc} Note that inverting an affine transformation always yields another affine transformation. 205 */ 206 @Override 207 public AffineMapping2D getInverse() { 208 double det = a00 * a11 - a01 * a10; 209 double b00 = a11 / det; 210 double b01 = -a01 / det; 211 double b02 = (a01 * a12 - a02 * a11) / det; 212 double b10 = -a10 / det; 213 double b11 = a00 / det; 214 double b12 = (a02 * a10 - a00 * a12) / det; 215 return new AffineMapping2D(b00, b01, b02, b10, b11, b12); 216 } 217 218 /** 219 * {@inheritDoc} 220 * @return a new affine mapping 221 */ 222 @Override 223 public AffineMapping2D duplicate() { 224 return new AffineMapping2D(this); 225 } 226 227 @Override 228 public double[][] getJacobian(Pnt2d xy) { 229 final double x = xy.getX(); 230 final double y = xy.getY(); 231 return new double[][] 232 {{x, y, 0, 0, 1, 0}, 233 {0, 0, x, y, 0, 1}}; 234 } 235 236 // ---------------------------------------------------------------------- 237 238// /** 239// * For testing only. 240// * @param args ignored 241// */ 242// public static void main(String[] args) { 243// PrintPrecision.set(6); 244// double[][] A = 245// {{-2, 4, -3}, 246// {3, 7, 2}, 247// {0, 0, 1}}; 248// System.out.println("a = \n" + Matrix.toString(A)); 249// System.out.println(); 250// double[][] ai = Matrix.inverse(A); 251// System.out.println("ai = \n" + Matrix.toString(ai)); 252// 253// LinearMapping2D Ai = new LinearMapping2D(ai); 254// System.out.println("Ai is affine: " + isAffine(Ai)); 255// 256// double[][] I = Matrix.multiply(A, ai); 257// System.out.println("\ntest: should be the identity matrix: = \n" + Matrix.toString(I)); 258// 259// double[][] B = 260// {{-2, 4, -3}, 261// {3, 7, 2}}; 262// 263// LinearMapping2D am = new AffineMapping2D(B); 264// System.out.println("an = \n" + Matrix.toString(am.getTransformationMatrix())); 265// } 266 267} 268 269 270 271