001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.line;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.Pnt2d.PntDouble;
013import imagingbook.common.geometry.basic.Primitive2d;
014import imagingbook.common.geometry.shape.ShapeProducer;
015import imagingbook.common.hough.HoughLine;
016import imagingbook.common.math.Arithmetic;
017import imagingbook.common.math.PrintPrecision;
018
019import java.awt.Shape;
020import java.awt.geom.Path2D;
021import java.util.Locale;
022
023import static imagingbook.common.math.Arithmetic.isZero;
024import static imagingbook.common.math.Arithmetic.sqr;
025
026/**
027 * <p>
028 * This class represents an algebraic line of the form A x + B y + C = 0. Instances are immutable and normalized such
029 * that ||(A,B)|| = 1. See Sec. 10.1 and Appendix F.1 of [1] for details.
030 * </p>
031 * <p>
032 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
033 * (2022).
034 * </p>
035 *
036 * @author WB
037 * @version 2022/11/18
038 */
039public class AlgebraicLine implements ShapeProducer, Primitive2d {
040        
041        public final double A, B, C;
042        
043        // constructors --------------------------------------------------
044
045        /**
046         * Constructor. Creates a {@link AlgebraicLine} instance with parameters A, B, C.
047         *
048         * @param A line parameter A
049         * @param B line parameter B
050         * @param C line parameter C
051         */
052        public AlgebraicLine(double A, double B, double C) {
053                double norm = Math.sqrt(sqr(A) + sqr(B));
054                if (isZero(norm)) {
055                        throw new IllegalArgumentException("A and B may not both be zero");
056                }
057                this.A = A / norm;      // don't switch sign here since this messes up signed point distance calculation
058                this.B = B / norm;
059                this.C = C / norm;
060        }
061
062        /**
063         * Constructor.  Creates a {@link AlgebraicLine} instance from a parameter vector [A, B, C].
064         *
065         * @param p parameter vector [A, B, C]
066         */
067        public AlgebraicLine(double[] p) {
068                this(p[0], p[1], p[2]);
069        }
070        
071        
072        // static factory methods ----------------------------------------
073
074        /**
075         * Creates a new {@link AlgebraicLine} instance from a given start point and orientation vector. For a point on the
076         * left side of the line (looking along the direction vector), the value returned by
077         * {@link #getSignedDistance(Pnt2d)} is positive and negative for points on the right side.
078         *
079         * @param s start point
080         * @param v orientation vector
081         * @return a new {@link AlgebraicLine} instance
082         */
083        public static AlgebraicLine from(double[] s, double[] v) {
084                double a = -v[1];
085                double b = v[0];
086                double c = v[1] * s[0] - v[0] * s[1];
087                return new AlgebraicLine(a, b, c);
088        }
089
090        /**
091         * Creates a new {@link AlgebraicLine} instance from a given {@link ParametricLine}.
092         *
093         * @param pl a {@link ParametricLine}
094         * @return a new {@link AlgebraicLine} instance
095         */
096        public static AlgebraicLine from(ParametricLine pl) {
097                return AlgebraicLine.from(pl.getS(), pl.getV());
098        }
099
100        /**
101         * Creates a new {@link AlgebraicLine} instance from two given points. The direction of the line is from the first
102         * to the second point.
103         *
104         * @param p0 first point
105         * @param p1 second point
106         * @return a new {@link AlgebraicLine} instance
107         */
108        public static AlgebraicLine from(Pnt2d p0, Pnt2d p1) {
109                double[] s = p0.toDoubleArray();
110                double[] v = p1.minus(p0).toDoubleArray();
111                return AlgebraicLine.from(s, v);
112        }
113
114        /**
115         * Creates a new {@link AlgebraicLine} instance from a given {@link SlopeInterceptLine}. Note: This is trivial,
116         * since {@link SlopeInterceptLine} is a (restricted) {@link AlgebraicLine} itself.
117         *
118         * @param sil a {@link SlopeInterceptLine}
119         * @return a new {@link AlgebraicLine} instance
120         */
121        public static AlgebraicLine from(SlopeInterceptLine sil) {
122//              double a = sil.getK();
123//              double c = sil.getD();
124//              return new AlgebraicLine(a, -1, c);     
125                return new AlgebraicLine(sil.A, sil.B, sil.C);  
126        }
127        
128        // getter/setter methods ------------------------------------------
129        
130        /**
131         * Returns the algebraic line parameters [A, B, C].
132         * @return algebraic line parameters
133         */
134        public final double[] getParameters() {
135                return new double[] {A, B, C};
136        }
137
138        /**
139         * Returns the x-coordinate of the reference point. For a {@link AlgebraicLine}, the result is always zero.
140         * Inheriting classes (like {@link HoughLine}) override this method.
141         *
142         * @return the x-coordinate reference
143         */
144        public double getXref() {
145                return 0.0;
146        }
147
148        /**
149         * Returns the y-coordinate of the reference point. For a {@link AlgebraicLine}, the result is always zero.
150         * Inheriting classes (like {@link HoughLine}) override this method.
151         *
152         * @return the y-coordinate reference
153         */
154        public double getYref() {
155                return 0.0;
156        }
157        
158        // other methods ------------------------------------------
159
160        /**
161         * Returns the orthogonal distance between this line and the point (x, y). The result may be positive or negative,
162         * depending on which side of the line (x, y) is located. It is assumed that the line is normalized, i.e., ||(a,b)||
163         * = 1.
164         *
165         * @param x x-coordinate of point position.
166         * @param y y-coordinate of point position.
167         * @return The perpendicular distance between this line and the point (x, y).
168         */
169        public double getDistance(double x, double y) {
170                return Math.abs(getSignedDistance(x, y));
171        }
172
173        /**
174         * Returns the orthogonal (unsigned) distance between this line and the point p. The result is always non-negative.
175         *
176         * @param p point position.
177         * @return The perpendicular distance between this line and the point p.
178         */
179        @Override
180        public double getDistance(Pnt2d p) {
181                return Math.abs(getSignedDistance(p));
182        }
183
184        /**
185         * Returns the orthogonal (signed) distance between this line and the point (x, y). The result may be positive or
186         * negative, depending on which side of the line (x, y) is located. It is assumed that the line is normalized, i.e.,
187         * ||(A,B)|| = 1.
188         *
189         * @param x x-coordinate of point position.
190         * @param y y-coordinate of point position.
191         * @return The perpendicular distance between this line and the point (x, y).
192         */
193        public double getSignedDistance(double x, double y) {
194                return (A * (x - this.getXref()) + B * (y - this.getYref()) + C);
195        }
196
197        /**
198         * Returns the orthogonal (signed) distance between this line and the specified point. The result may be positive or
199         * negative, depending on which side of the line (the point is located. It is assumed that the line is normalized,
200         * i.e., ||(A,B)|| = 1.
201         *
202         * @param p a 2D point
203         * @return The perpendicular distance between this line and the point
204         */
205        public double getSignedDistance(Pnt2d p) {
206                return getSignedDistance(p.getX(), p.getY());
207        }
208
209
210        /**
211         * Returns the point on the line that is closest to the specified 2D point. The line is assumed to be normalized.
212         *
213         * @param p an arbitrary 2D point
214         * @return the closest line point
215         */
216        public Pnt2d getClosestLinePoint(Pnt2d p) {
217                final double s = 1.0; // 1.0 / (sqr(a) + sqr(b)); // assumed to be normalized
218                final double xr = this.getXref();
219                final double yr = this.getYref();
220                double xx = p.getX() - xr;
221                double yy = p.getY() - yr;
222                double x0 = xr + s * (sqr(B) * xx - A * B * yy - A * C);
223                double y0 = yr + s * (sqr(A) * yy - A * B * xx - B * C);
224                return PntDouble.from(x0, y0);
225        }
226
227        /**
228         * Calculates the sum of squared distances between this line and a given array of 2D points.
229         *
230         * @param points an array of points
231         * @return the sum of squared distances
232         */
233        public double getSquareError(Pnt2d[] points) {
234                double sum2 = 0;
235                for (Pnt2d p : points) {
236                        sum2 = sum2 + sqr(getDistance(p));
237                }
238                return sum2;
239        }
240
241        /**
242         * Finds the intersection point between this line and another {@link AlgebraicLine}. Returns {@code null} if the two
243         * lines are parallel.
244         *
245         * @param l2 another {@link AlgebraicLine}
246         * @return the intersection point or {@code null} if lines are parallel
247         */
248        public Pnt2d intersect(AlgebraicLine l2) {
249                AlgebraicLine l1 = this;        
250                double det = l1.A * l2.B - l2.A * l1.B;
251                if (isZero(det)) {
252                        return null;
253                }
254                else {
255                        double x = (l1.B * l2.C - l2.B * l1.C) / det;
256                        double y = (l2.A * l1.C - l1.A * l2.C) / det;
257                        return Pnt2d.from(x, y);
258                }
259        }
260        
261        // -------------------------------------------------------------------
262        
263        @Override
264        public Shape getShape(double length) {
265                double xRef = this.getXref();
266                double yRef = this.getYref();
267//              double angle = Math.atan2(this.B, this.A);      //this.getAngle();
268                double radius = -this.C;                                        //this.getRadius();
269                // unit vector perpendicular to the line
270                double dx = this.A;                                             // Math.cos(angle);     
271                double dy = this.B;                                                     // Math.sin(angle);
272                // calculate the line's center point (closest to the reference point)
273                double x0 = xRef + radius * dx;
274                double y0 = yRef + radius * dy;
275                // calculate the line end points (using normal vectors)
276                double x1 = x0 + dy * length;
277                double y1 = y0 - dx * length;
278                double x2 = x0 - dy * length;
279                double y2 = y0 + dx * length;
280                Path2D path = new Path2D.Double();
281                path.moveTo(x1, y1);
282                path.lineTo(x2, y2);
283                return path;
284        }
285
286        /**
287         * Returns a {@link Shape} for this line to be drawn in a canvas of the specified size. Since an algebraic line is
288         * of infinite extent, we need to know the drawing size. The returned line segment is sufficiently long to cover the
289         * entire canvas, i.e., both end points are outside the canvas.
290         *
291         * @param width the width of the drawing canvas
292         * @param height the height of the drawing canvas
293         * @return a {@link Shape} instance for this line
294         */
295        public Shape getShape(int width, int height) {
296                double length = Math.sqrt(sqr(width) + sqr(height));
297                return this.getShape(length);
298        }
299        
300//      public Shape getShape(int width, int height) {
301//              HoughLine hl = new HoughLine(this, 0.5 * width, 0.5 * height, 0);
302//              return hl.getShape(width, height);
303//              
304//      }
305        
306        // -------------------------------------------------------------------
307        
308        @Override
309        public boolean equals(Object other) {
310                if (this == other) {
311                        return true;
312                }
313                if (other instanceof AlgebraicLine) {
314                        return this.equals((AlgebraicLine) other, Arithmetic.EPSILON_DOUBLE);
315                }
316                else {
317                        return false;
318                }
319        }
320        
321        // TODO: this should be easier to do if parameters are normalized
322        /**
323         * Checks if this {@link AlgebraicLine} is equal to another {@link AlgebraicLine}.
324         * 
325         * @param other another {@link AlgebraicLine}
326         * @param tolerance the maximum deviation
327         * @return true if both lines are equal
328         */
329        public boolean equals(AlgebraicLine other, double tolerance) {
330                AlgebraicLine L1 = this;
331                AlgebraicLine L2 = other;
332                // get two different points on L1:
333                Pnt2d xA = L1.getClosestLinePoint(PntDouble.ZERO);
334                Pnt2d xB = PntDouble.from(xA.getX() - L1.B, xA.getY() + L1.A);
335                // check if both points are on L2 too:
336                return (isZero(L2.getDistance(xA), tolerance) && isZero(L2.getDistance(xB), tolerance));
337        }
338        
339        @Override
340        public String toString() {
341                String fStr = PrintPrecision.getFormatStringFloat();
342//              return String.format(Locale.US, "%s <a=%.3f, b=%.3f, c=%.3f>",
343                return String.format(Locale.US, "%s<" + fStr + ", " + fStr + ", " + fStr + ">",
344                                this.getClass().getSimpleName(), A, B, C);
345        }
346
347}
348
349