001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.hulls; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.geometry.basic.Pnt2d.PntDouble; 013import imagingbook.common.geometry.line.AlgebraicLine; 014import imagingbook.common.geometry.shape.ShapeProducer; 015import org.apache.commons.math3.geometry.euclidean.twod.Vector2D; 016import org.apache.commons.math3.geometry.euclidean.twod.hull.ConvexHull2D; 017import org.apache.commons.math3.geometry.euclidean.twod.hull.MonotoneChain; 018 019import java.awt.Shape; 020import java.awt.geom.Path2D; 021import java.util.ArrayList; 022import java.util.Arrays; 023import java.util.List; 024 025/** 026 * <p> 027 * This class calculate the convex hull of a 2D point set. It is based on the convex hull implementation provided by the 028 * Apache Commons Math library, in particular classes {@link ConvexHull2D} and {@link MonotoneChain} [1]. See Sec. 8.4.2 029 * of [2] for additional details. 030 * </p> 031 * <p> 032 * [1] <a href="https://commons.apache.org/proper/commons-math/index.html"> 033 * https://commons.apache.org/proper/commons-math/index.html</a> <br> [2] W. Burger, M.J. Burge, <em>Digital Image 034 * Processing – An Algorithmic Introduction</em>, 3rd ed, Springer (2022). 035 * </p> 036 * 037 * @author WB 038 * @version 2022/06/24 039 */ 040public class ConvexHull implements ShapeProducer { 041 042 private final ConvexHull2D hull; 043 private final Pnt2d[] vertices; 044 045 /** 046 * Constructor, creates a {@link ConvexHull} instance from an {@link Iterable} over {@link Pnt2d}. At least one 047 * distinct point is required. 048 * 049 * @param points an iterator over 2D points 050 */ 051 public ConvexHull(Iterable<Pnt2d> points) { 052 if (!points.iterator().hasNext()) { 053 throw new IllegalArgumentException("empty point sequence, at least one input point required"); 054 } 055 List<Vector2D> pts = toVector2D(points); 056 this.hull = new MonotoneChain().generate(pts); 057 Vector2D[] vecs = hull.getVertices(); 058 this.vertices = new Pnt2d[vecs.length]; 059 for (int i = 0; i < vecs.length; i++) { 060 vertices[i] = PntDouble.from(vecs[i]); 061 } 062 } 063 064 /** 065 * Constructor, creates a {@link AxisAlignedBoundingBox} instance from an array of {@link Pnt2d} points. At least 066 * one distinct point is required. 067 * 068 * @param points an array of 2D points 069 */ 070 public ConvexHull(Pnt2d[] points) { 071 this(() -> Arrays.stream(points).iterator()); 072 } 073 074 private static List<Vector2D> toVector2D(Iterable<Pnt2d> points) { 075 List<Vector2D> vecs = new ArrayList<Vector2D>(); 076 for (Pnt2d p : points) { 077 vecs.add(new Vector2D(p.getX(), p.getY())); 078 } 079 return vecs; 080 } 081 082 /** 083 * Returns a sequence of 2D points on the convex hull (in counter-clockwise order). 084 * 085 * @return sequence of 2D points on the convex hull 086 */ 087 public Pnt2d[] getVertices() { 088 return this.vertices; 089 } 090 091// @Deprecated 092// public Line2D[] getSegments() { 093// Segment[] origSegments = hull.getLineSegments(); 094// Line2D[] newSegments = new Line2D.Double[origSegments.length]; 095// for (int i = 0; i < origSegments.length; i++) { 096// Segment seg = origSegments[i]; 097// Vector2D start = seg.getStart(); 098// Vector2D end = seg.getEnd(); 099// newSegments[i] = new Line2D.Double(start.getX(), start.getY(), end.getX(), end.getY()); 100// } 101// return newSegments; 102// } 103 104 // -------------------------------------------------------------------- 105 106 107 108 @Override 109 public Shape getShape(double scale) { 110 if (vertices.length < 2) { // degenerate case (single point) 111 return vertices[0].getShape(scale); 112 } 113 else { 114 Path2D path = new Path2D.Double(Path2D.WIND_NON_ZERO, 4); 115 path.moveTo(vertices[0].getX(), vertices[0].getY()); 116 for (int i = 1; i < vertices.length; i++) { 117 path.lineTo(vertices[i].getX(), vertices[i].getY()); 118 } 119 path.closePath(); 120 return path; 121 } 122 } 123 124 // -------------------------------------------------------------------- 125 126 public static final double DefaultContainsTolerance = 1e-12; 127 128 public boolean contains(Pnt2d p) { 129 return contains(p, DefaultContainsTolerance); 130 } 131 132 /** 133 * Checks if this convex hull contains the specified point. This method is used instead of 134 * {@link Path2D#contains(double, double)} to avoid false results due to roundoff errors. 135 * 136 * @param p some 2D point 137 * @param tolerance positive quantity for being outside 138 * @return true if the point is inside the hull 139 */ 140 public boolean contains(Pnt2d p, double tolerance) { 141 for (int i = 0; i < vertices.length; i++) { 142 int j = (i + 1) % vertices.length; 143 AlgebraicLine line = AlgebraicLine.from(vertices[i], vertices[j]); 144 double dist = line.getSignedDistance(p); 145 // positive signed distance means that the point is to the left 146 if (dist + tolerance < 0) { 147 return false; 148 } 149 } 150 return true; 151 } 152 153}