001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.points;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.mappings.linear.LinearMapping2D;
013
014/**
015 * Describes a fitter based on a linear transformation model.
016 * @author WB
017 */
018public interface LinearFit2d {
019
020        /**
021         * Returns the (3,3) or (2,3) transformation matrix A for this fit, such that {@code y_i ~ A * x_i} (with
022         * {@code x_i} in homogeneous coordinates).
023         *
024         * @return the transformation matrix for this fit
025         */
026        double[][] getTransformationMatrix();
027        
028        /**
029         * Returns the total error for this fit.
030         * @return the fitting error
031         */
032        double getError();
033
034        /**
035         * Calculates and returns the sum of squared fitting errors for two associated point sequences (P, Q) under a linear
036         * transformation specified by a 3x3 matrix A.
037         *
038         * @param P the point sequence to be fitted
039         * @param Q the reference point sequence
040         * @param A a 3x3 transformation matrix
041         * @return the
042         */
043        public static double getSquaredError(Pnt2d[] P, Pnt2d[] Q, double[][] A) {
044                final int m = Math.min(P.length,  Q.length);
045                LinearMapping2D map = new LinearMapping2D(A);
046                double errSum = 0;
047                for (int i = 0; i < m; i++) {
048                        Pnt2d p = P[i];
049                        Pnt2d q = Q[i];
050                        Pnt2d pp = map.applyTo(p);
051                        errSum = errSum + q.distanceSq(pp);
052                }
053                return errSum;
054        }
055        
056}