001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.points; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import org.apache.commons.math3.linear.ArrayRealVector; 013import org.apache.commons.math3.linear.DecompositionSolver; 014import org.apache.commons.math3.linear.MatrixUtils; 015import org.apache.commons.math3.linear.RealMatrix; 016import org.apache.commons.math3.linear.RealVector; 017import org.apache.commons.math3.linear.SingularValueDecomposition; 018 019/** 020 * <p> 021 * This class implements 2D point fitting under affine (three-point) transformations (exact and least-squares). See Sec. 022 * 21.1.3 of [1] for details. 023 * </p> 024 * <p> 025 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 026 * (2022). 027 * </p> 028 * 029 * @author WB 030 * @version 2022/08/01 031 */ 032public class AffineFit2d implements LinearFit2d { 033 034 private final RealMatrix A; // the calculated transformation matrix 035 private final double err; // the calculated error 036 037 /** 038 * Constructor. Fits two sequences of 2D points using an affine transformation model. At least 3 point pairs are 039 * required. For 3 point pairs, the solution is an exact fit, otherwise a least-squares fit is found. 040 * 041 * @param P the source points 042 * @param Q the target points 043 */ 044 public AffineFit2d(Pnt2d[] P, Pnt2d[] Q) { // 045 checkSize(P, Q); 046 int m = P.length; 047 048 RealMatrix M = MatrixUtils.createRealMatrix(2 * m, 6); 049 RealVector b = new ArrayRealVector(2 * m); 050 051 // mount the matrix M 052 int row = 0; 053 for (Pnt2d p : P) { 054 M.setEntry(row, 0, p.getX()); 055 M.setEntry(row, 1, p.getY()); 056 M.setEntry(row, 2, 1); 057 row++; 058 M.setEntry(row, 3, p.getX()); 059 M.setEntry(row, 4, p.getY()); 060 M.setEntry(row, 5, 1); 061 row++; 062 } 063 064 // mount vector b 065 row = 0; 066 for (Pnt2d q : Q) { 067 b.setEntry(row, q.getX()); 068 row++; 069 b.setEntry(row, q.getY()); 070 row++; 071 } 072 073 // solve M * a = b (for the unknown parameter vector a): 074 DecompositionSolver solver = new SingularValueDecomposition(M).getSolver(); 075 RealVector a = solver.solve(b); 076 A = makeTransformationMatrix(a); 077 err = Math.sqrt(LinearFit2d.getSquaredError(P, Q, A.getData())); 078 } 079 080 // creates a (2 x 3) transformation matrix from the elements of a 081 private RealMatrix makeTransformationMatrix(RealVector a) { 082 RealMatrix A = MatrixUtils.createRealMatrix(2, 3); 083 int i = 0; 084 for (int row = 0; row < 2; row++) { 085 // get (n+1) elements from a and place in row 086 for (int j = 0; j < 3; j++) { 087 A.setEntry(row, j, a.getEntry(i)); 088 i++; 089 } 090 } 091 return A; 092 } 093 094 // -------------------------------------------------------- 095 096 private void checkSize(Pnt2d[] P, Pnt2d[] Q) { 097 if (P.length < 3 || Q.length < 3) { 098 throw new IllegalArgumentException("At least 3 point pairs are required to calculate this fit"); 099 } 100 } 101 102 // -------------------------------------------------------- 103 104 @Override 105 public double[][] getTransformationMatrix() { 106 return A.getData(); 107// return A; 108 } 109 110 @Override 111 public double getError() { 112 return err; 113 } 114 115}