001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.line.utils; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012 013import java.util.Random; 014 015/** 016 * <p> 017 * Instances of this class are used to randomly sample points along a given straight line segment, x/y coordinates being 018 * perturbed with Gaussian noise. Mainly used for testing line fitters. 019 * </p> 020 * 021 * @author WB 022 * @version 2022/09/29 023 */ 024public class LineSampler { 025 026 private final Random rg; 027 private final Pnt2d p1, p2; 028 029 /** 030 * Constructor (with no specific seed). 031 * @param p1 first point of the line segment 032 * @param p2 second point of the line segment 033 */ 034 public LineSampler(Pnt2d p1, Pnt2d p2) { 035 this(p1, p2, 0); 036 } 037 038 /** 039 * Constructor (with specific random seed). 040 * @param p1 first point of the line segment 041 * @param p2 second point of the line segment 042 * @param seed random seed (pass 0 for complete randomness) 043 */ 044 public LineSampler(Pnt2d p1, Pnt2d p2, long seed) { 045 this.p1 = p1; 046 this.p2 = p2; 047 this.rg = (seed == 0) ? new Random() : new Random(seed); 048 } 049 050 /** 051 * Returns an array of randomly sampled points. 052 * @param n the number of points 053 * @param sigma standard deviation of Gaussian position noise 054 * @return an array of random points 055 */ 056 public Pnt2d[] getPoints(int n, double sigma) { 057 double dx = p2.getX() - p1.getX(); 058 double dy = p2.getY() - p1.getY(); 059 Pnt2d[] pts = new Pnt2d[n]; 060 061 for (int i = 0; i < n; i++) { 062 double x = p1.getX() + dx * i / n + rg.nextGaussian() * sigma; 063 double y = p1.getY() + dy * i / n + rg.nextGaussian() * sigma; 064 pts[i] = Pnt2d.from(x, y); 065 } 066 067 return pts; 068 } 069 070}