001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.line; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.geometry.basic.PntUtils; 013import imagingbook.common.math.Matrix; 014import org.apache.commons.math3.linear.MatrixUtils; 015import org.apache.commons.math3.linear.RealMatrix; 016import org.apache.commons.math3.linear.SingularValueDecomposition; 017 018/** 019 * <p> 020 * This class implements line fitting by orthogonal regression to a set of 2D points using singular-value decomposition 021 * (SVD). See Sec. 10.2.2 (Alg. 10.2) of [1] for additional details. 022 * </p> 023 * <p> 024 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 025 * (2022). 026 * </p> 027 * 028 * @author WB 029 * @version 2022/09/29 030 * @see OrthogonalLineFitEigen 031 * @see OrthogonalLineFitHomogeneous 032 */ 033public class OrthogonalLineFitSvd implements LineFit { 034 035 private final int n; 036 private final double[] p; // algebraic line parameters A,B,C 037 038 /** 039 * Constructor, performs a linear regression fit to the specified points. At least two different points are 040 * required. 041 * 042 * @param points an array with at least 2 points 043 */ 044 public OrthogonalLineFitSvd(Pnt2d[] points) { 045 if (points.length < 2) { 046 throw new IllegalArgumentException("line fit requires at least 2 points"); 047 } 048 this.n = points.length; 049 this.p = fit(points); 050 } 051 052 @Override 053 public int getSize() { 054 return n; 055 } 056 057 @Override 058 public double[] getLineParameters() { 059 return p; 060 } 061 062 private double[] fit(Pnt2d[] points) { 063 final int n = points.length; 064 final double[][] X = new double[n][2]; 065 Pnt2d ctr = PntUtils.centroid(points); 066 final double xc = ctr.getX(); 067 final double yc = ctr.getY(); 068 for (int i = 0; i < n; i++) { 069 X[i][0] = points[i].getX() - xc; 070 X[i][1] = points[i].getY() - yc; 071 } 072 073 SingularValueDecomposition svd = 074 new SingularValueDecomposition(MatrixUtils.createRealMatrix(X)); 075 076 RealMatrix V = svd.getV(); 077 double[] s = svd.getSingularValues(); 078 int k = Matrix.idxMin(s); 079 double[] e = V.getColumn(k); 080 081 double A = e[0]; 082 double B = e[1]; 083 double C = -A * xc - B * yc; 084 return new double[] {A,B,C}; 085 } 086 087}