001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.line;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.basic.PntUtils;
013import imagingbook.common.math.Matrix;
014import org.apache.commons.math3.linear.MatrixUtils;
015import org.apache.commons.math3.linear.RealMatrix;
016import org.apache.commons.math3.linear.SingularValueDecomposition;
017
018/**
019 * <p>
020 * This class implements line fitting by orthogonal regression to a set of 2D points using singular-value decomposition
021 * (SVD). See Sec. 10.2.2 (Alg. 10.2) of [1] for additional details.
022 * </p>
023 * <p>
024 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
025 * (2022).
026 * </p>
027 *
028 * @author WB
029 * @version 2022/09/29
030 * @see OrthogonalLineFitEigen
031 * @see OrthogonalLineFitHomogeneous
032 */
033public class OrthogonalLineFitSvd implements LineFit {
034        
035        private final int n;
036        private final double[] p;       // algebraic line parameters A,B,C
037
038        /**
039         * Constructor, performs a linear regression fit to the specified points. At least two different points are
040         * required.
041         *
042         * @param points an array with at least 2 points
043         */
044        public OrthogonalLineFitSvd(Pnt2d[] points) {
045                if (points.length < 2) {
046                        throw new IllegalArgumentException("line fit requires at least 2 points");
047                }
048                this.n = points.length;
049                this.p = fit(points);
050        }
051        
052        @Override
053        public int getSize() {
054                return n;
055        }
056
057        @Override
058        public double[] getLineParameters() {
059                return p;
060        }
061        
062        private double[] fit(Pnt2d[] points) {
063                final int n = points.length;
064                final double[][] X = new double[n][2];
065                Pnt2d ctr = PntUtils.centroid(points);
066                final double xc = ctr.getX();
067                final double yc = ctr.getY();
068                for (int i = 0; i < n; i++) {
069                        X[i][0] = points[i].getX() - xc;
070                        X[i][1] = points[i].getY() - yc;
071                }
072                
073                SingularValueDecomposition svd =  
074                                new SingularValueDecomposition(MatrixUtils.createRealMatrix(X));
075                
076                RealMatrix V = svd.getV();
077                double[] s = svd.getSingularValues();
078                int k = Matrix.idxMin(s);
079                double[] e = V.getColumn(k);
080
081                double A = e[0];
082                double B = e[1];
083                double C = -A * xc - B * yc;
084                return new double[] {A,B,C};
085        }
086        
087}