001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.line;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.math.Matrix;
013import org.apache.commons.math3.linear.Array2DRowRealMatrix;
014import org.apache.commons.math3.linear.MatrixUtils;
015import org.apache.commons.math3.linear.QRDecomposition;
016import org.apache.commons.math3.linear.RealMatrix;
017import org.apache.commons.math3.linear.SingularValueDecomposition;
018
019/**
020 * <p>
021 * This class implements line fitting by orthogonal regression to a set of 2D points by solving a homogeneous linear
022 * system. See Sec. 6.7.1 of [1] and Sec. 10.2.2 (Alg. 10.2) of [2] for additional details.
023 * </p>
024 * <p>
025 * [1] W. Gander, M. J. Gander, and F. Kwok. "Scientific Computing – An Introduction using Maple and MATLAB". Springer
026 * (2014). <br> [2] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd
027 * ed, Springer (2022).
028 * </p>
029 *
030 * @author WB
031 * @version 2022/09/29
032 * @see OrthogonalLineFitEigen
033 * @see OrthogonalLineFitSvd
034 */
035public class OrthogonalLineFitHomogeneous implements LineFit {
036        
037        private final Pnt2d[] points;
038        private final double[] p;       // algebraic line parameters A,B,C
039
040        /**
041         * Constructor, performs a orthogonal regression fit to the specified points. At least two different points are
042         * required.
043         *
044         * @param points an array with at least 2 points
045         */
046        public OrthogonalLineFitHomogeneous(Pnt2d[] points) {
047                if (points.length < 2) {
048                        throw new IllegalArgumentException("line fit requires at least 2 points");
049                }
050                this.points = points;
051                this.p = fit();
052        }
053        
054        @Override
055        public int getSize() {
056                return points.length;
057        }
058        
059        @Override
060        public double[] getLineParameters() {
061                return p;
062        }
063        
064        private double[] fit() {
065                final int n = points.length; //.max(3, pts.length);
066                final double[][] X = new double[n][3];
067                
068                for (int i = 0; i < points.length; i++) {
069                        X[i][0] = 1;
070                        X[i][1] = points[i].getX();
071                        X[i][2] = points[i].getY();
072                }
073                
074                QRDecomposition qr = new QRDecomposition(MatrixUtils.createRealMatrix(X));
075                RealMatrix R = qr.getR();
076                
077//              RealMatrix RR = R.getSubMatrix(1, 2, 1, 2);
078                RealMatrix RR = new Array2DRowRealMatrix(2,2);
079                RR.setEntry(0, 0, R.getEntry(1, 1));
080                RR.setEntry(0, 1, R.getEntry(1, 2));
081                if (R.getRowDimension() >= 3) {
082                        RR.setEntry(1, 1, R.getEntry(2, 2));
083                }
084        
085                SingularValueDecomposition svd = new SingularValueDecomposition(RR);
086                
087                RealMatrix V = svd.getV();
088                double[] s = svd.getSingularValues();
089                int k = Matrix.idxMin(s);
090                double[] e = V.getColumn(k);
091                
092                double R01 = R.getEntry(0, 1);
093                double R02 = R.getEntry(0, 2);
094                double R00 = R.getEntry(0, 0);
095
096                double A = e[0];
097                double B = e[1];
098                double C = ( -A * R01 - B * R02) / R00;
099                return new double[] {A,B,C};
100        }
101
102}