001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.line; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.math.eigen.EigenDecompositionJama; 013import imagingbook.common.util.PrimitiveSortMap; 014import org.apache.commons.math3.linear.MatrixUtils; 015 016import static imagingbook.common.math.Arithmetic.sqr; 017 018/** 019 * <p> 020 * This class implements line fitting by orthogonal regression to a set of 2D points using eigendecomposition. See Sec. 021 * 10.2.2 (Alg. 10.1) of [1] for additional details. 022 * </p> 023 * <p> 024 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 025 * (2022). 026 * </p> 027 * 028 * @author WB 029 * @version 2022/09/29 030 * @see OrthogonalLineFitSvd 031 * @see OrthogonalLineFitHomogeneous 032 */ 033public class OrthogonalLineFitEigen implements LineFit { 034 035 private final int n; 036 private final double[] p; // algebraic line parameters A,B,C 037 038 /** 039 * Constructor, performs a orthogonal regression fit to the specified points. At least two different points are 040 * required. 041 * 042 * @param points an array with at least 2 points 043 */ 044 public OrthogonalLineFitEigen(Pnt2d[] points) { 045 if (points.length < 2) { 046 throw new IllegalArgumentException("line fit requires at least 2 points"); 047 } 048 this.n = points.length; 049 this.p = fit(points); 050 } 051 052 @Override 053 public int getSize() { 054 return n; 055 } 056 057 @Override 058 public double[] getLineParameters() { 059 return p; 060 } 061 062 private double[] fit(Pnt2d[] points) { 063 final int n = points.length; 064 065 double Sx = 0, Sy = 0, Sxx = 0, Syy = 0, Sxy = 0; 066 067 for (int i = 0; i < n; i++) { 068 final double x = points[i].getX(); 069 final double y = points[i].getY(); 070 Sx += x; 071 Sy += y; 072 Sxx += sqr(x); 073 Syy += sqr(y); 074 Sxy += x * y; 075 } 076 077 double sxx = Sxx - sqr(Sx) / n; 078 double syy = Syy - sqr(Sy) / n; 079 double sxy = Sxy - Sx * Sy / n; 080 081 double[][] S = { 082 {sxx, sxy}, 083 {sxy, syy} 084 }; 085 086 087 EigenDecompositionJama es = new EigenDecompositionJama(MatrixUtils.createRealMatrix(S)); // Jama-derived local implementation 088// EigenDecomposition es = new EigenDecomposition(MatrixUtils.createRealMatrix(S)); // Apache Commons Maths 089 int k = PrimitiveSortMap.getNthSmallestIndex(es.getRealEigenvalues(), 0); 090 double[] e = es.getEigenvector(k).toArray(); 091 092 double A = e[0]; 093 double B = e[1]; 094 double C = -(A * Sx + B * Sy) / n; 095 096 return new double[] {A, B, C}; 097 } 098}