001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.line;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.math.eigen.EigenDecompositionJama;
013import imagingbook.common.util.PrimitiveSortMap;
014import org.apache.commons.math3.linear.MatrixUtils;
015
016import static imagingbook.common.math.Arithmetic.sqr;
017
018/**
019 * <p>
020 * This class implements line fitting by orthogonal regression to a set of 2D points using eigendecomposition. See Sec.
021 * 10.2.2 (Alg. 10.1) of [1] for additional details.
022 * </p>
023 * <p>
024 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
025 * (2022).
026 * </p>
027 *
028 * @author WB
029 * @version 2022/09/29
030 * @see OrthogonalLineFitSvd
031 * @see OrthogonalLineFitHomogeneous
032 */
033public class OrthogonalLineFitEigen implements LineFit {
034        
035        private final int n;
036        private final double[] p;       // algebraic line parameters A,B,C
037
038        /**
039         * Constructor, performs a orthogonal regression fit to the specified points. At least two different points are
040         * required.
041         *
042         * @param points an array with at least 2 points
043         */
044        public OrthogonalLineFitEigen(Pnt2d[] points) {
045                if (points.length < 2) {
046                        throw new IllegalArgumentException("line fit requires at least 2 points");
047                }
048                this.n = points.length;
049                this.p = fit(points);
050        }
051        
052        @Override
053        public int getSize() {
054                return n;
055        }
056
057        @Override
058        public double[] getLineParameters() {
059                return p;
060        }
061        
062        private double[] fit(Pnt2d[] points) {
063                final int n = points.length;
064        
065                double Sx = 0, Sy = 0, Sxx = 0, Syy = 0, Sxy = 0;
066                
067                for (int i = 0; i < n; i++) {
068                        final double x = points[i].getX();
069                        final double y = points[i].getY();
070                        Sx += x;
071                        Sy += y;
072                        Sxx += sqr(x);
073                        Syy += sqr(y);
074                        Sxy += x * y;
075                }
076                
077                double sxx = Sxx - sqr(Sx) / n;
078                double syy = Syy - sqr(Sy) / n;
079                double sxy = Sxy - Sx * Sy / n;
080                
081                double[][] S = {
082                                {sxx, sxy},
083                                {sxy, syy} 
084                };
085                
086                
087                EigenDecompositionJama es = new EigenDecompositionJama(MatrixUtils.createRealMatrix(S));        // Jama-derived local implementation
088//              EigenDecomposition es = new EigenDecomposition(MatrixUtils.createRealMatrix(S));        // Apache Commons Maths
089                int k = PrimitiveSortMap.getNthSmallestIndex(es.getRealEigenvalues(), 0);
090                double[] e = es.getEigenvector(k).toArray();
091                
092                double A = e[0];
093                double B = e[1];
094                double C = -(A * Sx + B * Sy) / n;
095                
096                return new double[] {A, B, C};
097        }
098}