001/******************************************************************************* 002 * This software is provided as a supplement to the authors' textbooks on digital 003 * image processing published by Springer-Verlag in various languages and editions. 004 * Permission to use and distribute this software is granted under the BSD 2-Clause 005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause). 006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved. 007 * Visit https://imagingbook.com for additional details. 008 ******************************************************************************/ 009package imagingbook.common.geometry.fitting.line; 010 011import imagingbook.common.geometry.basic.Pnt2d; 012import imagingbook.common.geometry.line.AlgebraicLine; 013import imagingbook.common.geometry.line.SlopeInterceptLine; 014 015import static imagingbook.common.math.Arithmetic.sqr; 016 017/** 018 * <p> 019 * This class implements line fitting by linear regression to a set of 2D points. See Sec. 10.2.1 of [1] for additional 020 * details. 021 * </p> 022 * <p> 023 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing – An Algorithmic Introduction</em>, 3rd ed, Springer 024 * (2022). 025 * </p> 026 * 027 * @author WB 028 * @version 2022/09/29 029 */ 030public class LinearRegressionFit implements LineFit { 031 032 private final int n; 033 private final double[] p; // line parameters A,B,C 034 private double k, d; 035 036 /** 037 * Constructor, performs a linear regression fit to the specified points. At least two different points are 038 * required. 039 * 040 * @param points an array with at least 2 points 041 */ 042 public LinearRegressionFit(Pnt2d[] points) { 043 if (points.length < 2) { 044 throw new IllegalArgumentException("line fit requires at least 2 points"); 045 } 046 this.n = points.length; 047 this.p = fit(points); 048 } 049 050 @Override 051 public int getSize() { 052 return n; 053 } 054 055 @Override 056 public double[] getLineParameters() { 057 return p; 058 } 059 060 /** 061 * Returns the slope parameter k for the fitted line y = k * x + d. 062 * 063 * @return line parameter k 064 */ 065 public double getK() { 066 return k; 067 } 068 069 /** 070 * Returns the intercept parameter d for the fitted line y = k * x + d. 071 * 072 * @return line parameter d 073 */ 074 public double getD() { 075 return d; 076 } 077 078 // ---------------------------------------------------------------------- 079 080 private double[] fit(Pnt2d[] points) { 081 final int n = points.length; 082 083 double Sx = 0, Sy = 0, Sxx = 0, Sxy = 0; 084 085 for (int i = 0; i < n; i++) { 086 final double x = points[i].getX(); 087 final double y = points[i].getY(); 088 Sx += x; 089 Sy += y; 090 Sxx += sqr(x); 091 Sxy += x * y; 092 } 093 094 double den = sqr(Sx) - n * Sxx; 095 this.k = (Sx * Sy - n * Sxy) / den; 096 this.d = (Sx * Sxy - Sxx * Sy) / den; 097 098 AlgebraicLine line = AlgebraicLine.from(new SlopeInterceptLine(k, d)); 099 return line.getParameters(); 100 } 101 102 103 /** 104 * Calculates and returns the sum of the squared differences between 105 * the y-coordinates of the data points (xi, yi) and the associated y-value 106 * of the regression line (y = k x + d). 107 * 108 * @param points an array of 2D points 109 * @return the squared regression error 110 */ 111 public double getSquaredRegressionError(Pnt2d[] points) { 112 double s2 = 0; 113 for (Pnt2d p : points) { 114 double y = k * p.getX() + d; 115 s2 = s2 + sqr(y - p.getY()); 116 } 117 return s2; 118 } 119 120}