001/*******************************************************************************
002 * This software is provided as a supplement to the authors' textbooks on digital
003 * image processing published by Springer-Verlag in various languages and editions.
004 * Permission to use and distribute this software is granted under the BSD 2-Clause
005 * "Simplified" License (see http://opensource.org/licenses/BSD-2-Clause).
006 * Copyright (c) 2006-2023 Wilhelm Burger, Mark J. Burge. All rights reserved.
007 * Visit https://imagingbook.com for additional details.
008 ******************************************************************************/
009package imagingbook.common.geometry.fitting.ellipse.geometric;
010
011import imagingbook.common.geometry.basic.Pnt2d;
012import imagingbook.common.geometry.ellipse.GeometricEllipse;
013import imagingbook.common.geometry.fitting.ellipse.algebraic.EllipseFitAlgebraic;
014import imagingbook.common.geometry.fitting.ellipse.algebraic.EllipseFitFitzgibbonStable;
015import imagingbook.common.geometry.fitting.ellipse.utils.EllipseSampler;
016import imagingbook.common.ij.DialogUtils.DialogLabel;
017import imagingbook.common.math.Matrix;
018import imagingbook.common.math.PrintPrecision;
019import imagingbook.common.util.ParameterBundle;
020import org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory;
021import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
022import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
023import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
024import org.apache.commons.math3.fitting.leastsquares.MultivariateJacobianFunction;
025import org.apache.commons.math3.linear.Array2DRowRealMatrix;
026import org.apache.commons.math3.linear.ArrayRealVector;
027import org.apache.commons.math3.linear.MatrixUtils;
028import org.apache.commons.math3.linear.RealMatrix;
029import org.apache.commons.math3.linear.RealVector;
030import org.apache.commons.math3.optim.SimpleVectorValueChecker;
031import org.apache.commons.math3.util.Pair;
032
033import java.util.ArrayList;
034import java.util.List;
035
036import static imagingbook.common.math.Arithmetic.sqr;
037import static imagingbook.common.math.Matrix.makeRealMatrix;
038import static imagingbook.common.math.Matrix.subtract;
039import static org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory.evaluationChecker;
040import static org.apache.commons.math3.linear.MatrixUtils.createRealVector;
041
042/**
043 * <p>
044 * "Coordinate-based" geometric ellipse fitter using iterative minimization with the Levenberg-Marquart method. See Sec.
045 * 11.2.2 of [1] for details.
046 * </p>
047 * <p>
048 * [1] W. Burger, M.J. Burge, <em>Digital Image Processing &ndash; An Algorithmic Introduction</em>, 3rd ed, Springer
049 * (2022).
050 * </p>
051 *
052 * @author WB
053 * @version 2022/11/17
054 */
055public class EllipseGeometricFitCoord extends EllipseFitGeometric {
056        
057        private final Pnt2d[] pts;
058        private final double tolerance;
059        private final int maxEvaluations;
060        private final int maxIterations;
061        
062        private final double[] V;               // arrays for function values/Jacobian
063        private final double[][] J;
064        
065        private final MultivariateJacobianFunction model;
066        private final Optimum solution;
067        private final List<double[]> history = new ArrayList<>();
068        
069        
070        public EllipseGeometricFitCoord(Pnt2d[] pts, GeometricEllipse initEllipse, int maxEvaluations, 
071                        int maxIterations, double tolerance, boolean syntheticDeriv) {
072                this.pts = pts;
073                int n = pts.length;
074                this.V = new double[2*n];
075                this.J = new double[2*n][5];
076                this.maxEvaluations = maxEvaluations;
077                this.maxIterations = maxIterations;
078                this.tolerance = tolerance;
079                this.model = (syntheticDeriv) ? new SyntheticModel() : new AnalyticModel();
080                this.solution = solveLM(initEllipse.getParameters());
081        }
082        
083        public EllipseGeometricFitCoord(Pnt2d[] pts, GeometricEllipse initEllipse) {
084                this(pts, initEllipse, DefaultMaxIterations, DefaultMaxIterations, DefaultTolerance, false);
085        }
086        
087        // --------------------------------------------------------------------------
088        
089        @Override
090        public double[] getParameters() {
091                return solution.getPoint().toArray();
092        }
093        
094        @Override
095        public int getIterations() {
096                return solution.getIterations();
097        }
098        
099        @Override
100        public List<double[]> getHistory() {
101                return history;
102        }
103        
104        // --------------------------------------------------------------------------
105
106        private Optimum solveLM(double[] p0) {
107                LeastSquaresProblem problem = 
108                        LeastSquaresFactory.create(
109                                model, 
110                                makeTargetVector(pts),
111                                createRealVector(p0),
112                                evaluationChecker(new SimpleVectorValueChecker(tolerance, tolerance)),
113                                maxEvaluations, maxIterations);
114
115                LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
116                Optimum solution = optimizer.optimize(problem);
117                
118                return solution;
119        }
120        
121        /**
122         * Returns a vector of alternating x/y coordinates of the target points:
123         * {@code (x_0, y_0, x_1, y_1, ..., x_{n-1}, y_{n-1})}.
124         * 
125         * @param pts target points
126         * @return vector of length 2n
127         */
128        private RealVector makeTargetVector(Pnt2d[] pts) {
129                int n = pts.length;
130                final double[] target = new double[2*n];
131                for (int i = 0; i < n; i++) {
132                        Pnt2d p = pts[i];
133                        target[2*i]     = p.getX();
134                        target[2*i + 1] = p.getY();
135                }
136                return MatrixUtils.createRealVector(target);
137        }
138        
139        // --------------------------------------------------------------------------
140        
141        class AnalyticModel implements MultivariateJacobianFunction {
142                
143                @Override
144                public Pair<RealVector, RealMatrix> value(RealVector point) {
145                        final double[] p = point.toArray();
146                        if (RecordHistory) {
147                                history.add(p.clone());
148                        }
149                        final GeometricEllipse ellipse = new GeometricEllipse(p);
150                        final double ra = ellipse.ra;
151                        final double rb = ellipse.rb;
152                        final double xc = ellipse.xc;
153                        final double yc = ellipse.yc;
154                        final double theta = ellipse.theta;
155                        final double ra2 = sqr(ra);
156                        final double rb2 = sqr(rb);
157                        final double C = Math.cos(theta);
158                        final double S = Math.sin(theta);
159                        final double[] xyc = new double[] {xc, yc};
160                        RealMatrix R = makeRealMatrix(2, 2,
161                                        C, -S, 
162                                        S,  C);
163                        RealMatrix Rt = R.transpose();
164                        
165                        // calculate values and Jacobian
166                        for (int i = 0; i < pts.length; i++) {
167                                final int i2 = 2*i;
168                                Pnt2d XYi = pts[i];
169                                Pnt2d XYp = ellipse.getClosestPoint(XYi);
170                                
171                                // values
172                                V[i2]     = XYp.getX();
173                                V[i2 + 1] = XYp.getY();
174                                
175                                // Jacobian
176                                double[] xyi = XYi.toDoubleArray();
177                                double[] uvi = Rt.operate(subtract(xyi, xyc));                                  // target point in canon. coordinates
178                                double ui = uvi[0],  vi = uvi[1];                                                               // = (u_i, v_i)
179
180                                double[] xyp = ellipse.getClosestPoint(xyi);                                    // ellipse point closest to Xi
181                                double xp = xyp[0], yp = xyp[1];                                                                // = (\breve{x}_i, \breve{y}_i)
182
183                                double[] uvp = Rt.operate(subtract(xyp, xyc));                                  // closest point in canon. coordinates
184                                double up = uvp[0], vp = uvp[1];                                                                // = (\breve{u}_i, \breve{u}_i)                         
185
186                                RealMatrix Q1 = makeRealMatrix(2, 2,
187                                                0, 0 ,
188                                                vi - vp, up - ui );     
189                                RealMatrix Q2 = makeRealMatrix(2, 2,
190                                                1/ra2, 0,
191                                                0,   1/rb2 );
192                                RealMatrix Q3 = makeRealMatrix(2, 2,
193                                                up/ra2,  vp/rb2,
194                                                vp/rb2, -up/ra2 );
195                                RealMatrix Q = Q1.multiply(Q2).add(Q3);
196                                RealMatrix Qi = MatrixUtils.inverse(Q);
197
198                                RealMatrix T = makeRealMatrix(2, 2,
199                                                0, 0,
200                                                -vp/rb2, up/ra2 );
201
202                                RealMatrix U = makeRealMatrix(2, 5,
203                                                0, 0,  -C, -S,  vi,
204                                                0, 0,   S, -C, -ui );
205
206                                RealMatrix V1 = makeRealMatrix(2, 3,
207                                                1, 0, 0,
208                                                0, vi - vp, up - ui );
209                                RealMatrix V2 = makeRealMatrix(3, 5,
210                                                -sqr(up)/(ra2*ra), -sqr(vp)/(rb2*rb), 0, 0, 0 ,
211                                                -2*up/(ra2*ra), 0,                    0, 0, 0 ,
212                                                0, -2*vp/(rb2*rb),                    0, 0, 0 );
213                                RealMatrix V = V1.multiply(V2);
214
215                                RealMatrix W = makeRealMatrix(2, 5,
216                                                0, 0, 1, 0, yc - yp,
217                                                0, 0, 0, 1, xp - xc );
218
219                                RealMatrix Ji = // J = -R * Q^-1 * (T * U + V) + W ..... 2x5 matrix
220                                                R.scalarMultiply(-1).multiply(Qi).multiply(T.multiply(U).add(V)).add(W);
221                                
222                                for (int j = 0; j < 5; j++) {
223                                        J[i2][j]     = Ji.getEntry(0, j);
224                                        J[i2 + 1][j] = Ji.getEntry(1, j);
225                                }
226                        }
227                        
228                        RealVector VV = new ArrayRealVector(V, false);
229                        RealMatrix JJ = new Array2DRowRealMatrix(J, false);
230                        return new Pair<>(VV, JJ);
231                }
232                
233        }
234        
235        // ---------------------------------------------------------------------------
236        
237        class SyntheticModel implements MultivariateJacobianFunction {
238                double delta = 0.00001;
239
240                @Override
241                public Pair<RealVector, RealMatrix> value(RealVector point) {
242                        double[] p = point.toArray();
243                        if (RecordHistory) {
244                                history.add(p.clone());
245                        }
246                        GeometricEllipse ellipse = new GeometricEllipse(p);             // ellipse for current parameter point
247                        GeometricEllipse[] dEllipses = new GeometricEllipse[5]; // differentially modified ellipses
248                        for (int j = 0; j < 5; j++) {
249                                double[] pd = p.clone();        
250                                pd[j] = p[j] + delta;                           // vary parameter j
251                                dEllipses[j] = new GeometricEllipse(pd);
252                        }
253                        
254                        // calculate values and Jacobian
255                        for (int i = 0; i < pts.length; i++) {
256                                final int i2 = 2*i;
257                                Pnt2d XYi = pts[i];
258                                Pnt2d XYp = ellipse.getClosestPoint(XYi);
259                                double xp = XYp.getX();
260                                double yp = XYp.getY();
261                                V[i2]     = xp;                                                         // values = closest point coord.
262                                V[i2 + 1] = yp; 
263                                
264                                for (int j = 0; j < 5; j++) {
265                                        Pnt2d XYpj = dEllipses[j].getClosestPoint(XYi);
266                                        J[i2][j]     = (XYpj.getX() - xp) / delta;      // estimated partial derivative
267                                        J[i2 + 1][j] = (XYpj.getY() - yp) / delta;
268                                }
269                        }
270                        
271                        RealVector VV = new ArrayRealVector(V, false);
272                        RealMatrix JJ = new Array2DRowRealMatrix(J, false);
273                        return new Pair<>(VV, JJ);
274                }
275                
276        }
277        
278        // -------------------------------------------------------------------
279        // -------------------------------------------------------------------
280        
281        public static class Parameters implements ParameterBundle<EllipseGeometricFitCoord> {
282                
283                @DialogLabel("number of points")
284                public int n = 20;
285                
286                @DialogLabel("ellipse center (xc)")
287                public double xc = 200;
288                
289                @DialogLabel("ellipsecenter (yc)")
290                public double yc = 190;
291                
292                @DialogLabel("major axis radius (ra)")
293                public double ra = 170;
294                
295                @DialogLabel("minor axis radius (rb)")
296                public double rb = 120;
297                
298                @DialogLabel("start angle (deg)")
299                public double angle0 = 0;
300                
301                @DialogLabel("stop angle (deg)")
302                public double angle1 = 180; // was Math.PI/4;
303                
304                @DialogLabel("ellipse orientation (deg)")
305                public double theta = 45;
306                
307                @DialogLabel("x/y noise (sigma)")
308                public double sigma = 5.0; //2.0;
309        };
310        
311        private static Parameters params = new Parameters();
312        
313      
314    public static void main(String[] args) {
315        
316        System.out.println("*** Testing "  + EllipseGeometricFitCoord.class.getSimpleName() + " ***");
317        
318        PrintPrecision.set(9);
319        
320        GeometricEllipse realEllipse = new GeometricEllipse(params.ra, params.rb, params.xc, params.yc, 
321                                Math.toRadians(params.theta));
322        
323        EllipseSampler sampler = new EllipseSampler(realEllipse, 17);
324        
325        Pnt2d[] points = sampler.getPoints(params.n, 
326                                Math.toRadians(params.angle0), Math.toRadians(params.angle1), params.sigma);
327        
328//      Pnt2d[] points = null;
329        //Pnt2d[] points = CircleMaker.makeTestCircle(XC, YC, R, 100, Angle0, Angle1, SigmaNoise);
330        //Pnt2d[] points = CircleMaker.makeTestCircle(XC, YC, R, 4, Angle0, Angle1, 0.1);
331        //Pnt2d[] points = CircleSampler.makeTestGander(30);
332        //Pnt2d[] points = CircleSampler.make3Points(30);
333                
334        EllipseFitAlgebraic fitA = new EllipseFitFitzgibbonStable(points);
335        
336        GeometricEllipse ellipseA = new GeometricEllipse(fitA.getEllipse());
337        System.out.println("ellipseA = " + ellipseA);
338        System.out.println("errorA = " + ellipseA.getMeanSquareError(points));
339                
340        EllipseGeometricFitCoord fitG = new EllipseGeometricFitCoord(points, ellipseA);
341        GeometricEllipse ellipseG = fitG.getEllipse();
342        System.out.println("ellipseG = " + ellipseG);
343        System.out.println("errorG = " + ellipseG.getMeanSquareError(points));
344        System.out.println("iterations = " + fitG.getIterations());
345        
346        for (double[] p : fitG.getHistory()) {
347                System.out.println("   " + Matrix.toString(p));
348        }
349        
350        // check analytic/synthetic Jacobians:
351        GeometricEllipse eTest = new GeometricEllipse (100, 120, 50, -30, 0.25);
352        Pnt2d xi = Pnt2d.from(110, -70);
353        Pnt2d[] pts = {xi};
354        
355        {
356                EllipseGeometricFitCoord fit = new EllipseGeometricFitCoord(pts, ellipseA);
357                MultivariateJacobianFunction model = fit.new AnalyticModel();
358                Pair<RealVector, RealMatrix> result = model.value(Matrix.makeRealVector(eTest.getParameters()));
359                RealMatrix J = result.getSecond();
360                System.out.println("J analytic = \n" + Matrix.toString(J.getData()));
361        }
362        
363        {
364                EllipseGeometricFitCoord fit = new EllipseGeometricFitCoord(pts, ellipseA);
365                MultivariateJacobianFunction model = fit.new SyntheticModel();
366                Pair<RealVector, RealMatrix> result = model.value(Matrix.makeRealVector(eTest.getParameters()));
367                RealMatrix J = result.getSecond();
368                System.out.println("J synthetic = \n" + Matrix.toString(J.getData()));
369        }
370    }
371
372}